-
Notifications
You must be signed in to change notification settings - Fork 108
/
main.py
149 lines (130 loc) · 5.88 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch
from torch.utils.data import DataLoader
import numpy as np
import os
import time
import pandas as pd
from params import par
from model import DeepVO
from data_helper import get_data_info, SortedRandomBatchSampler, ImageSequenceDataset, get_partition_data_info
# Write all hyperparameters to record_path
mode = 'a' if par.resume else 'w'
with open(par.record_path, mode) as f:
f.write('\n'+'='*50 + '\n')
f.write('\n'.join("%s: %s" % item for item in vars(par).items()))
f.write('\n'+'='*50 + '\n')
# Prepare Data
if os.path.isfile(par.train_data_info_path) and os.path.isfile(par.valid_data_info_path):
print('Load data info from {}'.format(par.train_data_info_path))
train_df = pd.read_pickle(par.train_data_info_path)
valid_df = pd.read_pickle(par.valid_data_info_path)
else:
print('Create new data info')
if par.partition != None:
partition = par.partition
train_df, valid_df = get_partition_data_info(partition, par.train_video, par.seq_len, overlap=1, sample_times=par.sample_times, shuffle=True, sort=True)
else:
train_df = get_data_info(folder_list=par.train_video, seq_len_range=par.seq_len, overlap=1, sample_times=par.sample_times)
valid_df = get_data_info(folder_list=par.valid_video, seq_len_range=par.seq_len, overlap=1, sample_times=par.sample_times)
# save the data info
train_df.to_pickle(par.train_data_info_path)
valid_df.to_pickle(par.valid_data_info_path)
train_sampler = SortedRandomBatchSampler(train_df, par.batch_size, drop_last=True)
train_dataset = ImageSequenceDataset(train_df, par.resize_mode, (par.img_w, par.img_h), par.img_means, par.img_stds, par.minus_point_5)
train_dl = DataLoader(train_dataset, batch_sampler=train_sampler, num_workers=par.n_processors, pin_memory=par.pin_mem)
valid_sampler = SortedRandomBatchSampler(valid_df, par.batch_size, drop_last=True)
valid_dataset = ImageSequenceDataset(valid_df, par.resize_mode, (par.img_w, par.img_h), par.img_means, par.img_stds, par.minus_point_5)
valid_dl = DataLoader(valid_dataset, batch_sampler=valid_sampler, num_workers=par.n_processors, pin_memory=par.pin_mem)
print('Number of samples in training dataset: ', len(train_df.index))
print('Number of samples in validation dataset: ', len(valid_df.index))
print('='*50)
# Model
M_deepvo = DeepVO(par.img_h, par.img_w, par.batch_norm)
use_cuda = torch.cuda.is_available()
if use_cuda:
print('CUDA used.')
M_deepvo = M_deepvo.cuda()
# Load FlowNet weights pretrained with FlyingChairs
# NOTE: the pretrained model assumes image rgb values in range [-0.5, 0.5]
if par.pretrained_flownet and not par.resume:
if use_cuda:
pretrained_w = torch.load(par.pretrained_flownet)
else:
pretrained_w = torch.load(par.pretrained_flownet_flownet, map_location='cpu')
print('Load FlowNet pretrained model')
# Use only conv-layer-part of FlowNet as CNN for DeepVO
model_dict = M_deepvo.state_dict()
update_dict = {k: v for k, v in pretrained_w['state_dict'].items() if k in model_dict}
model_dict.update(update_dict)
M_deepvo.load_state_dict(model_dict)
# Create optimizer
if par.optim['opt'] == 'Adam':
optimizer = torch.optim.Adam(M_deepvo.parameters(), lr=0.001, betas=(0.9, 0.999))
elif par.optim['opt'] == 'Adagrad':
optimizer = torch.optim.Adagrad(M_deepvo.parameters(), lr=par.optim['lr'])
elif par.optim['opt'] == 'Cosine':
optimizer = torch.optim.SGD(M_deepvo.parameters(), lr=par.optim['lr'])
T_iter = par.optim['T']*len(train_dl)
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_iter, eta_min=0, last_epoch=-1)
# Load trained DeepVO model and optimizer
if par.resume:
M_deepvo.load_state_dict(torch.load(par.load_model_path))
optimizer.load_state_dict(torch.load(par.load_optimizer_path))
print('Load model from: ', par.load_model_path)
print('Load optimizer from: ', par.load_optimizer_path)
# Train
print('Record loss in: ', par.record_path)
min_loss_t = 1e10
min_loss_v = 1e10
M_deepvo.train()
for ep in range(par.epochs):
st_t = time.time()
print('='*50)
# Train
M_deepvo.train()
loss_mean = 0
t_loss_list = []
for _, t_x, t_y in train_dl:
if use_cuda:
t_x = t_x.cuda(non_blocking=par.pin_mem)
t_y = t_y.cuda(non_blocking=par.pin_mem)
ls = M_deepvo.step(t_x, t_y, optimizer).data.cpu().numpy()
t_loss_list.append(float(ls))
loss_mean += float(ls)
if par.optim == 'Cosine':
lr_scheduler.step()
print('Train take {:.1f} sec'.format(time.time()-st_t))
loss_mean /= len(train_dl)
# Validation
st_t = time.time()
M_deepvo.eval()
loss_mean_valid = 0
v_loss_list = []
for _, v_x, v_y in valid_dl:
if use_cuda:
v_x = v_x.cuda(non_blocking=par.pin_mem)
v_y = v_y.cuda(non_blocking=par.pin_mem)
v_ls = M_deepvo.get_loss(v_x, v_y).data.cpu().numpy()
v_loss_list.append(float(v_ls))
loss_mean_valid += float(v_ls)
print('Valid take {:.1f} sec'.format(time.time()-st_t))
loss_mean_valid /= len(valid_dl)
f = open(par.record_path, 'a')
f.write('Epoch {}\ntrain loss mean: {}, std: {:.2f}\nvalid loss mean: {}, std: {:.2f}\n'.format(ep+1, loss_mean, np.std(t_loss_list), loss_mean_valid, np.std(v_loss_list)))
print('Epoch {}\ntrain loss mean: {}, std: {:.2f}\nvalid loss mean: {}, std: {:.2f}\n'.format(ep+1, loss_mean, np.std(t_loss_list), loss_mean_valid, np.std(v_loss_list)))
# Save model
# save if the valid loss decrease
check_interval = 1
if loss_mean_valid < min_loss_v and ep % check_interval == 0:
min_loss_v = loss_mean_valid
print('Save model at ep {}, mean of valid loss: {}'.format(ep+1, loss_mean_valid)) # use 4.6 sec
torch.save(M_deepvo.state_dict(), par.save_model_path+'.valid')
torch.save(optimizer.state_dict(), par.save_optimzer_path+'.valid')
# save if the training loss decrease
check_interval = 1
if loss_mean < min_loss_t and ep % check_interval == 0:
min_loss_t = loss_mean
print('Save model at ep {}, mean of train loss: {}'.format(ep+1, loss_mean))
torch.save(M_deepvo.state_dict(), par.save_model_path+'.train')
torch.save(optimizer.state_dict(), par.save_optimzer_path+'.train')
f.close()