forked from convexengineering/SPaircraft
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimple_ac_imports.py
502 lines (407 loc) · 16.6 KB
/
simple_ac_imports.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
"""
simple aircraft classes to import
"""
from gpkit import Model, Variable, units, SignomialsEnabled
from gpkit.constraints.sigeq import SignomialEquality as SignomialEquality
from gpkit.tools import te_exp_minus1
from gpkit.constraints.tight import Tight as TCS
from numpy import pi
import numpy as np
from turbofan.engine_validation import Engine
from Wing_simple_performance import Wing
class Aircraft(Model):
"Aircraft class"
def setup(self, Nclimb, Ncruise, enginestate, eng, Nfleet=0, **kwargs):
#create submodels
self.fuse = Fuselage()
self.wing = Wing()
if Nfleet != 0:
self.engine = Engine(True, Nclimb+Ncruise, enginestate, eng, Nfleet)
else:
self.engine = Engine(True, Nclimb+Ncruise, enginestate, eng)
#variable definitions
numeng = Variable('numeng', '-', 'Number of Engines')
Vne = Variable('V_{ne}', 144, 'm/s', 'Never exceed velocity')
rho0 = Variable('\\rho_0', 1.225, 'kg/m^3', 'Air density (0 ft)')
## SMmin = Variable('SM_{min}', '-', 'Minimum Static Margin')
## dxCG = Variable('\\Delta x_{CG}', 'm', 'Max CG Travel Range')
constraints = [self.wing['x_w'] == self.fuse['l_{fuse}']*0.6,
]
self.components = [self.fuse, self.wing, self.engine]
return self.components, constraints
def climb_dynamic(self, state):
"""
creates an aircraft climb performance model, given a state
"""
return ClimbP(self, state)
def cruise_dynamic(self, state):
"""
creates an aircraft cruise performance model, given a state
"""
return CruiseP(self, state)
def cruise_climb_dynamic(self, state):
"""
creates an aircraft cruise performance model, given a state
"""
return CruiseClimbP(self, state)
class AircraftP(Model):
"""
aircraft performance models superclass, contains constraints true for
all flight segments
"""
def setup(self, aircraft, state, **kwargs):
#make submodels
self.aircraft = aircraft
self.wingP = aircraft.wing.dynamic(state)
self.fuseP = aircraft.fuse.dynamic(state)
self.Pmodels = [self.wingP, self.fuseP]
#variable definitions
Vstall = Variable('V_{stall}', 'knots', 'Aircraft Stall Speed')
D = Variable('D', 'N', 'Total Aircraft Drag')
W_avg = Variable('W_{avg}', 'N', 'Geometric Average of Segment Start and End Weight')
W_start = Variable('W_{start}', 'N', 'Segment Start Weight')
W_end = Variable('W_{end}', 'N', 'Segment End Weight')
W_burn = Variable('W_{burn}', 'N', 'Segment Fuel Burn Weight')
WLoadmax = Variable('W_{Load_{max}}', 'N/m^2', 'Max Wing Loading')
WLoad = Variable('W_{Load}', 'N/m^2', 'Wing Loading')
t = Variable('tmin', 'min', 'Segment Flight Time in Minutes')
thours = Variable('thr', 'hour', 'Segment Flight Time in Hours')
CD = Variable('C_{D}', '-', 'Overall Drag Coefficient')
## xAC = Variable('x_{AC}', 'm', 'Aerodynamic Center Location')
## xCG = Variable('x_{CG}', 'm', 'CG location')
constraints = []
constraints.extend([
#speed must be greater than stall speed
state['V'] >= Vstall,
#Figure out how to delete
Vstall == 120*units('kts'),
WLoadmax == 6664 * units('N/m^2'),
#compute the drag
TCS([D >= self.wingP['D_{wing}'] + self.fuseP['D_{fuse}']]),
#compute the drag coefficient
CD == D/(.5*state.atm['\\rho']*state['V']**2*self.aircraft['S']),
#constraint CL and compute the wing loading
W_avg == .5*self.wingP['C_{L}']*self.aircraft['S']*state.atm['\\rho']*state['V']**2,
WLoad == .5*self.wingP['C_{L}']*self.aircraft['S']*state.atm['\\rho']*state['V']**2/self.aircraft.wing['S'],
#set average weight equal to the geometric avg of start and end weight
W_avg == (W_start * W_end)**.5,
#constrain the max wing loading
WLoad <= WLoadmax,
#time unit conversion
t == thours,
#make lift equal weight --> small angle approx in climb
self.wingP['L_w'] >= W_avg,
])
return constraints, self.Pmodels
class ClimbP(Model):
"""
Climb constraints
"""
def setup(self, aircraft, state, **kwargs):
#submodels
self.aircraft = aircraft
self.aircraftP = AircraftP(aircraft, state)
self.wingP = self.aircraftP.wingP
self.fuseP = self.aircraftP.fuseP
#variable definitions
theta = Variable('\\theta', '-', 'Aircraft Climb Angle')
excessP = Variable('P_{excess}', 'W', 'Excess Power During Climb')
RC = Variable('RC', 'feet/min', 'Rate of Climb/Decent')
dhft = Variable('dhft', 'feet', 'Change in Altitude Per Climb Segment [feet]')
RngClimb = Variable('R_{climb}', 'nautical_miles', 'Down Range Covered in Each Climb Segment')
#constraints
constraints = []
constraints.extend([
RC == excessP/self.aircraftP['W_{avg}'],
RC >= 500*units('ft/min'),
#make the small angle approximation and compute theta
theta * state['V'] == RC,
dhft == self.aircraftP['tmin'] * RC,
#makes a small angle assumption during climb
RngClimb == self.aircraftP['thr']*state['V'],
self.aircraftP['W_{burn}'] == self.aircraft.engine['TSFC'][:2]*self.aircraft.engine['F'][:2]*self.aircraftP['thr']
])
return constraints, self.aircraftP
class CruiseP(Model):
"""
Cruise constraints
"""
def setup(self, aircraft, state, **kwargs):
self.aircraft = aircraft
self.aircraftP = AircraftP(aircraft, state)
self.wingP = self.aircraftP.wingP
self.fuseP = self.aircraftP.fuseP
#variable definitions
z_bre = Variable('z_{bre}', '-', 'Breguet Parameter')
Rng = Variable('Rng', 'nautical_miles', 'Cruise Segment Range')
constraints = []
constraints.extend([
#taylor series expansion to get the weight term
TCS([self.aircraftP['W_{burn}']/self.aircraftP['W_{end}'] >=
te_exp_minus1(z_bre, nterm=3)]),
#time
self.aircraftP['thr'] * state['V'] == Rng,
self.aircraftP['W_{burn}'] == self.aircraft.engine['TSFC'][2:]*self.aircraft.engine['F'][:2:]*self.aircraftP['thr']
])
return constraints, self.aircraftP
class CruiseClimbP(Model):
"""
Climb constraints
"""
def setup(self, aircraft, state, **kwargs):
#submodels
self.aircraft = aircraft
self.aircraftP = AircraftP(aircraft, state)
self.wingP = self.aircraftP.wingP
self.fuseP = self.aircraftP.fuseP
#variable definitions
theta = Variable('\\theta', '-', 'Aircraft Climb Angle')
excessP = Variable('P_{excess}', 'W', 'Excess Power During Climb')
RC = Variable('RC', 'feet/min', 'Rate of Climb/Decent')
dhft = Variable('dhft', 'feet', 'Change in Altitude Per Climb Segment [feet]')
RngCruise = Variable('R_{cruise}', 'nautical_miles', 'Down Range Covered in Each Cruise Segment')
#constraints
constraints = []
constraints.extend([
RC == excessP/self.aircraftP['W_{avg}'],
#make the small angle approximation and compute theta
theta * state['V'] == RC,
dhft == self.aircraftP['tmin'] * RC,
#makes a small angle assumption during climb
RngCruise == self.aircraftP['thr']*state['V'],
])
return constraints, self.aircraftP
class CruiseSegment(Model):
"""
Combines a flight state and aircrat to form a cruise flight segment
"""
def setup(self, aircraft, **kwargs):
self.state = FlightState()
self.cruiseP = aircraft.cruise_dynamic(self.state)
return self.state, self.cruiseP
class CruiseClimbSegment(Model):
"""
Combines a flight state and aircrat to form a cruise flight segment
"""
def setup(self, aircraft, **kwargs):
self.state = FlightState()
self.cruiseP = aircraft.cruise_climb_dynamic(self.state)
return self.state, self.cruiseP
class ClimbSegment(Model):
"""
Combines a flight state and aircrat to form a cruise flight segment
"""
def setup(self, aircraft, **kwargs):
self.state = FlightState()
self.climbP = aircraft.climb_dynamic(self.state)
return self.state, self.climbP
class FlightState(Model):
"""
creates atm model for each flight segment, has variables
such as veloicty and altitude
"""
def setup(self,**kwargs):
#make an atmosphere model
self.alt = Altitude()
self.atm = Atmosphere(self.alt)
#declare variables
V = Variable('V', 'kts', 'Aircraft Flight Speed')
a = Variable('a', 'm/s', 'Speed of Sound')
R = Variable('R', 287, 'J/kg/K', 'Air Specific Heat')
gamma = Variable('\\gamma', 1.4, '-', 'Air Specific Heat Ratio')
M = Variable('M', '-', 'Mach Number')
#make new constraints
constraints = []
constraints.extend([
#compute the speed of sound with the state
a == (gamma * R * self.atm['T_{atm}'])**.5,
#compute the mach number
V == M * a,
])
#build the model
return self.alt, self.atm, constraints
class Altitude(Model):
"""
holds the altitdue variable
"""
def setup(self, **kwargs):
#define altitude variables
h = Variable('h', 'm', 'Segment Altitude [meters]')
hft = Variable('hft', 'feet', 'Segment Altitude [feet]')
constraints = []
constraints.extend([
h == hft, #convert the units on altitude
])
return constraints
class Atmosphere(Model):
def setup(self, alt, **kwargs):
p_sl = Variable("p_{sl}", 101325, "Pa", "Pressure at sea level")
T_sl = Variable("T_{sl}", 288.15, "K", "Temperature at sea level")
L_atm = Variable("L_{atm}", .0065, "K/m", "Temperature lapse rate")
M_atm = Variable("M_{atm}", .0289644, "kg/mol",
"Molar mass of dry air")
p_atm = Variable("P_{atm}", "Pa", "air pressure")
R_atm = Variable("R_{atm}", 8.31447, "J/mol/K", "air specific heating value")
TH = 5.257386998354459 #(g*M_atm/R_atm/L_atm).value
rho = Variable('\\rho', 'kg/m^3', 'Density of air')
T_atm = Variable("T_{atm}", "K", "air temperature")
"""
Dynamic viscosity (mu) as a function of temperature
References:
http://www-mdp.eng.cam.ac.uk/web/library/enginfo/aerothermal_dvd_only/aero/
atmos/atmos.html
http://www.cfd-online.com/Wiki/Sutherland's_law
"""
mu = Variable('\\mu', 'kg/(m*s)', 'Dynamic viscosity')
T_s = Variable('T_s', 110.4, "K", "Sutherland Temperature")
C_1 = Variable('C_1', 1.458E-6, "kg/(m*s*K^0.5)",
'Sutherland coefficient')
with SignomialsEnabled():
constraints = [
# Pressure-altitude relation
(p_atm/p_sl)**(1/5.257) == T_atm/T_sl,
# Ideal gas law
rho == p_atm/(R_atm/M_atm*T_atm),
#temperature equation
SignomialEquality(T_sl, T_atm + L_atm*alt['h']),
#constraint on mu
SignomialEquality((T_atm + T_s) * mu, C_1 * T_atm**1.5),
]
#like to use a local subs here in the future
subs = None
return constraints
##class Wing(Model):
## """
## place holder wing model
## """
## def setup(self, ** kwargs):
## #new variables
## W_wing = Variable('W_{wing}', 'N', 'Wing Weight')
##
## #aircraft geometry
## S = Variable('S', 'm^2', 'Wing Planform Area')
## AR = Variable('AR', '-', 'Aspect Ratio')
## span = Variable('b', 'm', 'Wing Span')
## span_max = Variable('b_{max}', 'm', 'Max Wing Span')
##
## K = Variable('K', '-', 'K for Parametric Drag Model')
## e = Variable('e', '-', 'Oswald Span Efficiency Factor')
##
## dum1 = Variable('dum1', 124.58, 'm^2')
## dum2 = Variable('dum2', 105384.1524, 'N')
##
## mac = Variable('mac', 'm',
## 'Mean aerodynamic chord (wing)')
##
## cmw = Variable('c_{m_{w}}', '-', 'Wing Pitching Moment Coefficient')
##
## CLmax = Variable('C_{L_{max}}', '-', 'Max Wing Lift Coefficient')
##
## xw = Variable('x_w', 'm', 'Position of wing aerodynamic center')
##
## constraints = []
##
## constraints.extend([
## #wing weight constraint
## #based off of a raymer weight and 737 data from TASOPT output file
## (S/(dum1))**.65 * (AR/10.1)**.5 == W_wing/(dum2),
##
## #compute wing span and aspect ratio, subject to a span constraint
## AR == (span**2)/S,
## AR <= 10,
##
## #compute K for the aircraft
## K == (pi * e * AR)**-1,
##
## mac == mac,
## CLmax == CLmax,
## cmw == cmw,
## xw == xw,
## ])
##
## return constraints
##
## def dynamic(self, state):
## """
## creates an instance of the wing's performance model
## """
## return WingPerformance(self, state)
##
##
##class WingPerformance(Model):
## """
## wing aero modeling
## """
## def setup(self, wing, state, **kwargs):
## #new variables
## CL= Variable('C_{L}', '-', 'Lift Coefficient')
## Cdw = Variable('C_{d_w}', '-', 'Cd for a NC130 Airfoil at Re=2e7')
## Dwing = Variable('D_{wing}', 'N', 'Total Wing Drag')
## Lwing = Variable('L_{wing}', 'N', 'Wing Lift')
##
## CLaw = Variable('C_{L_{\\alpha,w}}', '-', 'Lift curve slope, wing')
##
## #constraints
## constraints = []
##
## constraints.extend([
## #airfoil drag constraint
## Lwing == (.5*wing['S']*state.atm['\\rho']*state['V']**2)*CL,
## TCS([Cdw**6.5 >= (1.02458748e10 * CL**15.587947404823325 * state['M']**156.86410659495155 +
## 2.85612227e-13 * CL**1.2774976672501526 * state['M']**6.2534328002723703 +
## 2.08095341e-14 * CL**0.8825277088649582 * state['M']**0.0273667615730107 +
## 1.94411925e+06 * CL**5.6547413360261691 * state['M']**146.51920742858428)]),
## TCS([Dwing >= (.5*wing['S']*state.atm['\\rho']*state['V']**2)*(Cdw + wing['K']*CL**2)]),
##
## CLaw == 5,
## ])
##
## return constraints
class Fuselage(Model):
"""
place holder fuselage model
"""
def setup(self, **kwargs):
#new variables
n_pax = Variable('n_{pass}', '-', 'Number of Passengers to Carry')
#weight variables
W_payload = Variable('W_{payload}', 'N', 'Aircraft Payload Weight')
W_e = Variable('W_{e}', 'N', 'Empty Weight of Aircraft')
W_pax = Variable('W_{pass}', 'N', 'Estimated Average Passenger Weight, Includes Baggage')
A_fuse = Variable('A_{fuse}', 'm^2', 'Estimated Fuselage Area')
pax_area = Variable('pax_{area}', 'm^2', 'Estimated Fuselage Area per Passenger')
lfuse = Variable('l_{fuse}', 'm', 'Fuselage length')
wfuse = Variable('w_{fuse}', 'm', 'Fuselage width')
constraints = []
constraints.extend([
#compute fuselage area for drag approximation
A_fuse == pax_area * n_pax,
A_fuse == lfuse * wfuse,
#constraints on the various weights
W_payload == n_pax * W_pax,
#estimate based on TASOPT 737 model
W_e == .75*W_payload,
])
return constraints
def dynamic(self, state):
"""
returns a fuselage performance model
"""
return FuselagePerformance(self, state)
class FuselagePerformance(Model):
"""
Fuselage performance model
"""
def setup(self, fuse, state, **kwargs):
#new variables
Cdfuse = Variable('C_{D_{fuse}}', '-', 'Fuselage Drag Coefficient')
Dfuse = Variable('D_{fuse}', 'N', 'Total Fuselage Drag')
Cmfu = Variable('C_{m_{fuse}}', '-', 'Moment coefficient (fuselage)')
#constraints
constraints = []
constraints.extend([
Dfuse == Cdfuse * (.5 * fuse['A_{fuse}'] * state.atm['\\rho'] * state['V']**2),
Cdfuse == .005,
Cmfu == .05,
])
return constraints