diff --git a/src/20231025.md b/src/20231025.md new file mode 100644 index 0000000..8021d25 --- /dev/null +++ b/src/20231025.md @@ -0,0 +1,88 @@ +## 2023/10/25 + +### 1. Rigid body rotation with constant angular velocity $\vec \omega_0$ 以恒角速度$\vec \omega_0$转动的刚体 + +$$\overrightarrow \nabla \times \left( \vec \omega_0 \times \vec r\right) = 2 \omega_0$$ + +### 2. Field theory 场论 + +$$\vec r = x \hat i + y \hat j + z \hat k$$ + +$$r = \sqrt{x^2 + y^2 + z^2}$$ + +Common conclusions in field theory: + +- $\overrightarrow \nabla \cdot \vec r = 3$ +- $\overrightarrow \nabla \times \vec r = \vec 0$ +- $\overrightarrow \nabla r = \hat{\vec r}$ +- $\nabla^2 r = \dfrac{2}{r}$ +- $\overrightarrow \nabla \vec r = \mathbf I$ + +### 3. From Navier-Stokes equations to Bernoulli's principle (伯努利原理) + +The material derivative (物质导数) of $\vec v$ is shown as follows: + +$$\vec a = {\mathrm D \vec v \over \mathrm Dt} \equiv \underbrace{\partial \vec v \over \partial t}_\text{Local/Euler acceleration} + \underset{\text{平流加速度 (非线性)}}{\underbrace{\left(\vec v \cdot \overrightarrow \nabla \right) \vec v}_\text{advective acceleration}}$$ + +Euler, 1750: infinitesimal 无穷小量 + +Why does this form occur? + +Suppose we have a macroscopic tensor field (宏观张量场) $T$ with the sense that it depends only on position and time coordinates: + +$$T(t, \vec r(t))$$ + +$${\mathrm dT \over \mathrm dt} = {\partial T \over \partial t} + {\partial T \over \partial \vec r} {\mathrm d \vec r \over \mathrm dt} = {\partial T \over \partial t} + \vec v {\partial T \over \partial \vec r} = \left({\partial \over \partial t} + \vec v \cdot {\partial \over \partial \vec r} \right) T = \left({\partial \over \partial t} + \vec v \cdot \overrightarrow \nabla \right) T.$$ + +Using this we can get: If $\vec v = \vec v(\vec r(t), t)$, then $$\vec a = {\partial \vec v \over \partial t} + (\vec v \cdot \overrightarrow \nabla) \vec v.$$ + +From the Navier-Stokes equations we can get: + +$$\vec a = - {1 \over \rho} \overrightarrow \nabla p + \nu \nabla^2 \vec v + \vec g,$$ + +which become the Euler equations (fluid dynamics) when $\nu = 0.$ + +By using lamb vector $$\left(\overrightarrow \nabla \times \vec v \right) \times \vec v = (\vec v \cdot \overrightarrow \nabla) \vec v - \overrightarrow \nabla \left( {1 \over 2} v^2 \right),$$ + +we can get + +$${\partial \vec v \over \partial t} + \left(\overrightarrow \nabla \times \vec v \right) \times \vec v + \overrightarrow \nabla \left( {1 \over 2} v^2 \right) = -{1 \over \rho} \overrightarrow \nabla p + \mu \nabla^2 \vec v + \vec g.$$ + +Under the following conditions: + +- The fluid flows in steady state (定常流动): $\dfrac{\partial \vec v}{\partial t} = 0$ +- Inviscid fluid (无黏液体): $\nu = 0$ +- Under conservative force field $\vec g = - \overrightarrow \nabla (gh)$ +- The fluid is incompressible (液体不可压缩) + +We can get: + +$$\left(\overrightarrow \nabla \times \vec v \right) \times \vec v + \overrightarrow \nabla \left( {1 \over 2} v^2 \right) = - \overrightarrow \nabla \left({p \over \rho} \right) - \overrightarrow \nabla (gh)$$ + +$$\left(\overrightarrow \nabla \times \vec v \right) \times \vec v + \overrightarrow \nabla \left({p \over \rho} + {1 \over 2} v^2 + gh \right) = \vec 0$$ + +$${\vec v \over |\vec v|} \cdot \left[ \left(\overrightarrow \nabla \times \vec v \right) \times \vec v + \overrightarrow \nabla \left({p \over \rho} + {1 \over 2} v^2 + gh \right) \right] = 0$$ + +$${\vec v \over |\vec v|} \cdot \left[ \left(\overrightarrow \nabla \times \vec v \right) \times \vec v \right] + {\vec v \over |\vec v|} \cdot \overrightarrow \nabla \left({p \over \rho} + {1 \over 2} v^2 + gh \right) = 0$$ + +Clearly, + +$${\vec v \over |\vec v|} \cdot \left[ \left(\overrightarrow \nabla \times \vec v \right) \times \vec v \right] = 0,$$ + +because $\left(\overrightarrow \nabla \times \vec v \right) \perp \vec v.$ + +$\displaystyle {\vec v \over |\vec v|} \cdot \overrightarrow \nabla$ is a directional derivative (方向导数). + +Integral along the streamline (沿流线积分), and we obtain + +$${p \over \rho} + {1 \over 2} v^2 + gh = \text{const},$$ + +which is called the **Bernoulli's principle (伯努利原理)**. + +Its other forms include: + +| Form | Name | +| :-- | :-- | +| $${p \over \rho} + {1 \over 2} v^2 + gh = \text{const}$$ | Energy form (per unit mass) | +| $$p + {1 \over 2} \rho v^2 + \rho g h = \text{const}$$ | Pressure form | +| $${p \over \rho g} + {v^2 \over 2g} + h = \text{const}$$ | Head form (used in Hydraulic engineering 水利形式) |