Skip to content

Latest commit

 

History

History
31 lines (29 loc) · 4.26 KB

README.md

File metadata and controls

31 lines (29 loc) · 4.26 KB

Deep Clustering: methods and implements

Paper Conference Code
A Survey of Clustering With Deep Learning: From the Perspective of Network Architecture IEEE ACCESS 2018
GEMSEC: Graph Embedding with Self Clustering Arxiv 2018 TensorFlow
Clustering with Deep Learning: Taxonomy and New Methods Arxiv 2018 Theano
Deep Continuous Clustering(DCC) Arxiv 2018 Pytorch
Deep Clustering with Convolutional Autoencoders(DCEC) ICONIP 2018 Keras
SpectralNet: Spectral Clustering Using Deep Neural Networks ICLR 2018 TensorFlow
Subspace clustering using a low-rank constrained autoencoder(LRAE) Information Science 2018
Clustering-driven Deep Embedding with Pairwise Constraints(CPAC) Arxiv 2018 Pytorch
Towards K-means-friendly Spaces: Simultaneous Deep Learning and Clustering PMLR 2017
Deep Unsupervised Clustering With Gaussian Mixture Variational AutoEncoders(GMVAE) ICLR 2017 Lua
Is Simple Better?: Revisiting Simple Generative Models for Unsupervised Clustering NIPS 2017 Workshop Pytorch
Imporved Deep Embedding Clustering(IDEC) IJCAI 2017 Keras,Pytorch
Deep Clustering Network(DCN) Arxiv 2016 Theano
Deep Clustering via joint convolutional autoencoder embedding and relative entropy minimization(DEPICT) ICCV 2017 Theano
Discriminatively Boosted Clustering(DBC) Arxiv 2017
Variational Deep Embedding(VADE) IJCAI 2017 Keras
Deep Subspace Clustering Networks(DSC-Nets) NIPS 2017 TensorFlow
Graph Clustering with Dynamic Embedding(GRACE) Arxiv 2017
Deep Unsupervised Clustering Using Mixture of Autoencoders(MIXAE) Arxiv 2017
Deep Embedded Clustering(DEC) ICML 2016 Caffe TensorFlow
Joint Unsupervised Learning of Deep Representations and Image Clustering(JULE) CVPR 2016 Torch
Deep Embedding Network for Clustering(DEN) ICPR 2014
Auto-encoder Based Data Clustering(ABDC) CIARP 2013 Pytrorch
Learning Deep Representations for Graph Clustering AAAI 2014 python

TIPS

If you find this repository useful to your research or work, it is really appreciate to star this repository.