-
Notifications
You must be signed in to change notification settings - Fork 7
/
met-har.py
560 lines (506 loc) · 25.6 KB
/
met-har.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
import argparse
import copy
import os
import random
from typing import Any
import numpy as np
import torch
import torch.optim as optim
from torch import nn
from torch.optim.lr_scheduler import StepLR
import har_model
import utils
cross_entropy = nn.CrossEntropyLoss()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
cosine_similarity = nn.CosineSimilarity()
class MyEnsemble(nn.Module):
def __init__(self, modelA, modelB):
super(MyEnsemble, self).__init__()
self.modelA = modelA
self.modelB = modelB
def forward(self, x):
x1 = self.modelA(x)
x2 = self.modelB(x1)
return x2
class reptile_meta(object):
def __init__(self, graph, lr, device_i, loss_fun, embed_len, number_class, class_map=None, beta=0.5):
"""graph can be norm_embed"""
super(reptile_meta, self).__init__()
self.lr = lr
self.beta = beta
self.class_map = class_map
self.number_class = number_class
# initialize embed model and last layer
self.model = graph(bidirectional=False)
self.model = self.model.to(device_i)
self.last_layer = har_model.last_layer(embed_len, number_class)
self.last_layer = self.last_layer.to(device_i)
self.merge_model = MyEnsemble(self.model, self.last_layer)
self.training_op = {"last_optimizer": optim.Adam(self.last_layer.parameters(), lr=self.lr, weight_decay=1e-4),
"embed_optimizer": optim.Adam(self.model.parameters(), lr=self.lr, weight_decay=1e-4),
"loss_fun": loss_fun, "loss_fun_last": cross_entropy}
self.training_res = {"train_acc": [], "test_acc": []}
def label_transfer(self, target):
int_label = target.max(1)[1].numpy() # [B, 1]
result = self.class_map[int_label]
return torch.from_numpy(result)
def save_model(self, filename):
""" filename example: /path/checkpoint/model-100.t7
State dict contains: "model" key at least.
"""
state = {
"model": self.model.state_dict(),
"client": self.model_name,
}
torch.save(state, filename)
def build_data_loader(self):
self.training_op["trainloader"] = utils.dataloader_gen2(self.training_op["train_file"],
utils.parameter["BATCH_SIZE"] * 2,
target="hot",
train=True)
self.training_op["adaptloader"] = utils.dataloader_gen2(self.training_op["adapt_file"],
utils.parameter["BATCH_SIZE"] * 2,
target="hot",
train=True)
self.training_op["testloader"] = utils.dataloader_gen2(self.training_op["test_file"], 1, target="hot",
train=False)
self.training_op["scheduler"] = StepLR(self.training_op["embed_optimizer"], step_size=2, gamma=0.85)
def set_train_test_file(self, train, test, adapt):
self.training_op["train_file"] = train
self.training_op["test_file"] = test
self.training_op["adapt_file"] = adapt
self.user_id = self.training_op["train_file"][0].split(os.sep)[-1].split("_")[0] + "_act"
def get_model_weights(self):
return self.model.state_dict()
def assign_new_weights(self, weights_dict):
self.model.load_state_dict(weights_dict)
def train(self, num_epoch):
# print("=== train on: %s" % self.training_op["train_file"])
for epoch in range(2 * num_epoch):
self.model.train()
train_loss = 0
for batch_idx, (inputs, targets, _) in enumerate(self.training_op["trainloader"]):
inputs, targets = inputs.to(device), targets.to(device)
self.training_op["embed_optimizer"].zero_grad()
if device == "cuda":
embeddings = self.model(inputs.unsqueeze(1).type(torch.cuda.FloatTensor))
loss = self.training_op["loss_fun"](embeddings, targets, utils.parameter["BATCH_SIZE"])
else:
embeddings = self.model(inputs.unsqueeze(1).type(torch.FloatTensor))
loss = self.training_op["loss_fun"](embeddings, targets, utils.parameter["BATCH_SIZE"])
# back propogation
loss.backward()
self.training_op["embed_optimizer"].step()
# loss and accuracy
train_loss += loss.item()
self.training_op["scheduler"].step()
def test_2(self, print_ind=False):
self.merge_model.eval()
test_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets, targets_t) in enumerate(self.training_op["testloader"]):
inputs = inputs.to(device)
targets_t = targets_t.to(device)
# outputs = self.merge_model(inputs.unsqueeze(1).double())
if device == "cuda":
outputs = self.merge_model(inputs.unsqueeze(1).type(torch.cuda.FloatTensor))
else:
outputs = self.merge_model(inputs.unsqueeze(1).type(torch.FloatTensor))
# outputs = self.last_layer(embeddings)
# _, target_cce = targets.max(1)
target_cce = torch.from_numpy(all_trans_dict[self.user_id][targets.max(1)[1].numpy()]).to(device)
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets_t).sum().item()
if print_ind:
print("============Test loss: %.3f, Test acc: %.3f" % (
test_loss / (total + 1), 100.0 * correct / total))
# self.training_res["test_acc"].append(100.0 * correct / total)
return 100.0 * correct / total, total
def test(self, print_ind=False):
# print("===test on: %s" % self.training_op["test_file"])
self.model.eval()
self.last_layer.eval()
test_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets, targets_t) in enumerate(self.training_op["testloader"]):
inputs = inputs.to(device)
targets_t = targets_t.to(device)
if device == "cuda":
embeddings = self.model(inputs.unsqueeze(1).type(torch.cuda.FloatTensor))
else:
embeddings = self.model(inputs.unsqueeze(1).type(torch.FloatTensor))
outputs = self.last_layer(embeddings)
# _, target_cce = targets.max(1)
_, predicted = outputs.max(1)
target_cce = torch.from_numpy(all_trans_dict[self.user_id][targets.max(1)[1].numpy()]).to(device)
total += targets.size(0)
correct += predicted.eq(targets_t).sum().item()
if print_ind:
print("============Test loss: %.3f, Test acc: %.3f" % (
test_loss / (total + 1), 100.0 * correct / total))
# self.training_res["test_acc"].append(100.0 * correct / total)
return 100.0 * correct / total, total
def adapt(self, num_batch, train=False):
"""
First Adapt embedding net, then fine-tune the last layer.
"""
# Fine-tune the embedding net
self.model.train()
if train:
adapt_loader = self.training_op["trainloader"]
else:
adapt_loader = self.training_op["adaptloader"]
for batch_idx, (inputs, targets, targets_t) in enumerate(adapt_loader):
inputs, targets = inputs.to(device), targets.to(device)
self.training_op["embed_optimizer"].zero_grad()
if device == "cuda":
embeddings = self.model(inputs.unsqueeze(1).type(torch.cuda.FloatTensor))
loss = self.training_op["loss_fun"](embeddings, targets, int(utils.parameter["BATCH_SIZE"] / 2))
else:
embeddings = self.model(inputs.unsqueeze(1).type(torch.FloatTensor))
loss = self.training_op["loss_fun"](embeddings, targets, int(utils.parameter["BATCH_SIZE"] / 2))
loss.backward()
self.training_op["embed_optimizer"].step()
# Fine-tune last layer
self.last_layer.train()
correct = 0
total = 0
last_opt = optim.Adam(self.last_layer.parameters(), lr=self.lr, weight_decay=1e-4)
for epoch in range(num_batch):
for batch_idx, (inputs, targets, targets_t) in enumerate(adapt_loader):
inputs, targets, targets_t = inputs.to(device), targets.to(device), targets_t.to(device)
# self.training_op["last_optimizer"].zero_grad()
last_opt.zero_grad()
if device == "cuda":
embeddings = self.model(inputs.unsqueeze(1).type(torch.cuda.FloatTensor))
else:
embeddings = self.model(inputs.unsqueeze(1).type(torch.FloatTensor))
embeddings.detach() # TODO detach or not?
outputs = self.last_layer(embeddings)
if device == "cuda":
loss = self.training_op["loss_fun_last"](outputs, targets_t.type(torch.cuda.LongTensor) )
else:
loss = self.training_op["loss_fun_last"](outputs, targets_t.type(torch.LongTensor))
loss.backward()
last_opt.step()
def adapt_fixed(self, num_batch, train=False):
"""
First Adapt embedding net, then fine-tune the last layer.
"""
# Fine-tune the embedding net
self.model.train()
if train:
adapt_loader = self.training_op["trainloader"]
else:
adapt_loader = self.training_op["adaptloader"]
# Fine-tune last layer
self.last_layer.train()
correct = 0
total = 0
last_opt = optim.Adam(self.last_layer.parameters(), lr=self.lr, weight_decay=1e-4)
for epoch in range(num_batch):
for batch_idx, (inputs, targets) in enumerate(adapt_loader):
inputs, targets = inputs.to(device), targets.to(device)
# self.training_op["last_optimizer"].zero_grad()
last_opt.zero_grad()
embeddings = self.model(inputs.unsqueeze(1).double())
embeddings.detach()
# print(embeddings.size())
outputs = self.last_layer(embeddings)
if device == "cuda":
loss = self.training_op["loss_fun_last"](outputs, targets.max(1)[1].type(torch.cuda.LongTensor))
else:
loss = self.training_op["loss_fun_last"](outputs, targets.max(1)[1].type(torch.LongTensor))
loss.backward()
last_opt.step()
# fine_tune acc
_, predicted = outputs.max(1)
_, target_cce = targets.max(1)
total += targets.size(0)
correct += predicted.eq(target_cce).sum().item()
def asign_merge_model(self):
pass
def adapt_merged(self, num_batch, train=False):
"""
First Adapt embedding net, then fine-tune the last layer.
"""
# Fine-tune the embedding net
self.merge_model.train()
if train:
adapt_loader = self.training_op["trainloader"]
else:
adapt_loader = self.training_op["adaptloader"]
# Fine-tune last layer
correct = 0
total = 0
last_opt = optim.Adam(self.merge_model.parameters(), lr=self.lr, weight_decay=1e-4)
for epoch in range(num_batch):
for batch_idx, (inputs, targets) in enumerate(adapt_loader):
targets = torch.from_numpy(all_trans_dict[self.user_id][targets.max(1)[1].numpy()])
inputs, targets = inputs.to(device), targets.to(device)
# self.training_op["last_optimizer"].zero_grad()
last_opt.zero_grad()
outputs = self.merge_model(inputs.unsqueeze(1).double())
# print(embeddings.size())
# outputs = self.last_layer(embeddings)
if device == "cuda":
loss = self.training_op["loss_fun_last"](outputs, targets.type(torch.cuda.LongTensor))
# loss = self.training_op["loss_fun_last"](outputs, targets.max(1)[1].type(torch.cuda.LongTensor))
else:
loss = self.training_op["loss_fun_last"](outputs, targets.type(torch.LongTensor))
loss.backward()
last_opt.step()
def adapt_merged_2(self, num_batch, train=False):
"""
First Adapt embedding net, then fine-tune the last layer.
"""
# Fine-tune the embedding net
self.merge_model.train()
if train:
adapt_loader = self.training_op["trainloader"]
else:
adapt_loader = self.training_op["adaptloader"]
# Fine-tune last layer
correct = 0
total = 0
last_opt = optim.Adam(self.merge_model.parameters(), lr=utils.parameter["lr"], weight_decay=1e-4)
self.model.train()
for embed_epoch in range(10 * num_batch):
for batch_idx, (inputs, targets, _) in enumerate(adapt_loader):
inputs, targets = inputs.to(device), targets.to(device)
self.training_op["embed_optimizer"].zero_grad()
if device == "cuda":
embeddings = self.model(inputs.unsqueeze(1).type(torch.cuda.FloatTensor))
loss = self.training_op["loss_fun"](embeddings, targets, int(utils.parameter["BATCH_SIZE"] / 2))
else:
embeddings = self.model(inputs.unsqueeze(1).type(torch.FloatTensor))
loss = self.training_op["loss_fun"](embeddings, targets, int(utils.parameter["BATCH_SIZE"] / 2))
loss.backward()
self.training_op["embed_optimizer"].step()
for epoch in range(num_batch * 10):
for batch_idx, (inputs, targets, targets_t) in enumerate(adapt_loader):
# targets = torch.from_numpy(all_trans_dict[self.user_id][targets.max(1)[1].numpy()])
inputs, targets, targets_t = inputs.to(device), targets.to(device), targets_t.to(device)
# self.training_op["last_optimizer"].zero_grad()
last_opt.zero_grad()
if device == "cuda":
outputs = self.merge_model(inputs.unsqueeze(1).type(torch.cuda.FloatTensor))
loss = self.training_op["loss_fun_last"](outputs, targets_t.type(torch.cuda.LongTensor))
# targets.max(1)[1].type(torch.cuda.LongTensor)
else:
outputs = self.merge_model(inputs.unsqueeze(1).type(torch.FloatTensor))
loss = self.training_op["loss_fun_last"](outputs, targets_t.type(torch.LongTensor))
loss.backward()
last_opt.step()
def update_server_weights(w_list, w, sigma=0.2):
"""
model 1 and model 2 with same structure
return weights dict with values w_model1 - w_model2
sigma = 1 : federated learning
"""
w_avg = copy.deepcopy(w_list[0])
for k in w.keys():
for idx in range(1, len(w_list)):
w_avg[k] += w_list[idx][k]
w_avg[k] = w[k] + torch.mul((torch.div(w_avg[k], len(w_list)).sub(w[k])), sigma)
return w_avg
def update_server_weights_weighted(w_list, w, sigma=0.2): # TO BE DONE
# weights:
# flatten all model weights
weights_flattened = []
keys = w.keys()
used_keys = []
for ind, key in enumerate(keys):
if "batches_tracked" not in key:
used_keys.append(key)
# flatten w
w_param = []
for key in used_keys:
w_param.append(torch.flatten(w[key]))
w_flatten = torch.cat(w_param, dim=0)
# print(w_flatten.size())
# flatten w_list
for idx in range(len(w_list)):
model_params = []
for key in used_keys:
model_params.append(torch.flatten(w_list[idx][key]))
weights_flattened.append(torch.cat(model_params, dim=0))
# calculate l2 norm
l2 = []
cosine_dis = []
for idx in range(len(w_list)):
if device == "cpu":
l2.append(np.squeeze(torch.dist(weights_flattened[idx], w_flatten).numpy()))
cosine_dis.append(np.squeeze(
cosine_similarity(weights_flattened[idx].unsqueeze(dim=0), w_flatten.unsqueeze(dim=0)).numpy()))
else:
l2.append(np.squeeze(torch.dist(weights_flattened[idx], w_flatten).cpu().numpy()))
cosine_dis.append(np.squeeze(
cosine_similarity(weights_flattened[idx].unsqueeze(dim=0), w_flatten.unsqueeze(dim=0)).cpu().numpy()))
weights = []
for index in range(len(w_list)):
# weights.append(np.sqrt(l2[index] ** 2 + cosine_dis[index] ** 2))
weights.append(l2[index] * np.abs(cosine_dis[index]))
# normalize weights
weights_norm = []
total = np.sum(weights)
for val in weights:
weights_norm.append(val / total)
###################
# print(weights_norm)
# sys.exit()
###################
# weighted average
w_avg = copy.deepcopy(w_list[0])
for k in w.keys():
w_avg[k] = w_avg[k] * weights_norm[0]
for k in w.keys():
for idx in range(1, len(w_list)):
w_avg[k] += w_list[idx][k] * weights_norm[idx]
w_avg[k] = w[k] + torch.mul(w_avg[k].sub(w[k]), sigma)
return w_avg
def main(rounds, data_dir, out_dir, lr=0.001, local_e=1, leave_out=None, sigma=0.1, all_trans_dict=None):
"""
:param rounds: global rounds for federated learning: type: float
:param out_dir: output result dir: type: string
:param lr: initial learning rate: type float
:param local_e: local update epochs for federated learning: type: int
:param leave_out: leave out user index: 0-8 type: int
:param sigma: w_new = w + sigma* (avg_updated_w - w): sigma: float 0-1
:return: None
Save test acc result in output dir:
1. model acc on leave out user: before and after adapt
2. model acc on fed users: before and after adapt
"""
if leave_out is None:
leave_out = [0]
# all_act_num = utils.load_pickle("/data/ceph/seqrec/fl_data/www21/source/num_act_user_all.pickle")
all_act_num = {}
for user in all_trans_dict.keys():
all_act_num[user] = np.sum(all_trans_dict[user] != -1) # number of local activities of `user'
# the number of local act for each users.
all_train = [os.path.join(data_dir, file) for file in os.listdir(data_dir) if "train" in file]
all_test = [os.path.join(data_dir, file) for file in os.listdir(data_dir) if 'test' in file]
random.Random(0).shuffle(all_train)
random.Random(0).shuffle(all_test)
# 5 leave out for meta testing
train_users_train = all_train[0:-5]
train_user_test = all_test[0:-5]
test_users_train = all_train[-5:]
test_user_test = all_test[-5:]
# Meta-train users
client_models = []
for ind in range(len(train_users_train)):
file_name = train_users_train[ind].split(os.sep)[-1].split("_")[0]
client_models.append(
reptile_meta(har_model.norm_embed, lr, device, utils.pairwiseloss(), 100, all_act_num[file_name]))
client_train_file = [train_users_train[ind]]
client_test_file = [train_user_test[ind]]
client_adapt_file = client_train_file
client_models[-1].set_train_test_file(client_train_file, client_test_file, client_adapt_file)
client_models[-1].build_data_loader()
# Meta-test users
# Note: By replacing `norm_embed' with the `norm_cce' and removing the local fine-tune we get the reptile method.
leave_out_modules = []
for ind in range(5):
file_name = test_users_train[ind].split(os.sep)[-1].split("_")[0]
leave_out_modules.append(
reptile_meta(har_model.norm_embed, lr, device, utils.pairwiseloss(), 100, all_act_num[file_name]))
leave_train = [test_users_train[ind]]
leave_test = [test_user_test[ind]]
leave_adapt_file = leave_train
leave_out_modules[-1].set_train_test_file(leave_train, leave_test, leave_adapt_file)
leave_out_modules[-1].build_data_loader()
# server model
server_model = reptile_meta(har_model.norm_embed, lr, device, utils.pairwiseloss(), 100, 7)
# there are totally 7 activities in global act set.
# server_model result dir
fed_test_result = {"before": []} # result before fine-tune
leave_test_result = {"before": []}
init_after = 0
for val in [1, 1, 1]: # result after x steps of local fine-tune
fed_test_result["tune_%d" % (init_after + val)] = []
leave_test_result["tune_%d" % (init_after + val)] = []
init_after += val
for i in range(rounds): # global rounds
# sampling tasks/ here is the users
chosen_client = np.random.choice(len(train_users_train), 5, replace=False)
updated_weights = []
for user_idx in chosen_client:
# pull weights theta from center
###############################
# print(server_model.get_model_weights().keys())
# sys.exit()
###############################
print(" -- Start local training on user: ", train_users_train[user_idx])
client_models[user_idx].assign_new_weights(server_model.get_model_weights())
# local train
client_models[user_idx].train(num_epoch=local_e)
# get updated para difference.
updated_weights.append(client_models[user_idx].get_model_weights())
# print("done local train on user: %s" % train_users[user_idx])
print("# update global meta model ========")
server_model.assign_new_weights(
update_server_weights(updated_weights, server_model.get_model_weights(), sigma=sigma))
if i > 70 and i % 2 == 0:
print("# ====== Testing ===========")
adapt_val = 0
for val in [1, 1, 1]:
adapt_acc = []
weights = []
for user_idx in range(len(train_users_train)):
client_models[user_idx].assign_new_weights(server_model.get_model_weights())
client_models[user_idx].adapt_merged_2(num_batch=val + adapt_val, train=False)
acc, num = client_models[user_idx].test()
adapt_acc.append(acc)
weights.append(num)
adapt_val += val
fed_test_result["tune_%d" % adapt_val].append(np.average(adapt_acc, weights=weights))
# Meta-test users
print("# Testing meta-test user ===========")
adapt_val = 0
for val in [1, 1, 1]:
adapt_acc = []
weights = []
for j in range(5):
leave_out_modules[j].assign_new_weights(server_model.get_model_weights())
leave_out_modules[j].adapt_merged_2(num_batch=val + adapt_val, train=False)
acc, num = leave_out_modules[j].test()
adapt_acc.append(acc)
weights.append(num)
adapt_val += val
leave_test_result["tune_%d" % adapt_val].append(np.average(adapt_acc, weights=weights))
fed_test_file = os.path.join(out_dir, "metahar_train_b2.pickle")
leave_test_file = os.path.join(out_dir, "metahar_test_b2.pcikle")
utils.save_pickle(fed_test_result, fed_test_file)
utils.save_pickle(leave_test_result, leave_test_file)
# save test results local_sigma_tmp_leave
leave_str = ""
for val in leave_out:
leave_str += str(val)
fed_test_file = os.path.join(out_dir, "metahar_train_b2.pickle") # meta-train users
leave_test_file = os.path.join(out_dir, "metahar_test_b2.pcikle") # meta-test users
utils.save_pickle(fed_test_result, fed_test_file)
utils.save_pickle(leave_test_result, leave_test_file)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Meta-HAR')
parser.add_argument('--dataset', type=str, help='Dataset dir',
default="F:\\www21\\final_version\\Meta-HAR\\Data\\collected_pickle")
parser.add_argument('--result_dir', type=str, help='result dir',
default="F:\\www21\\final_version\\Meta-HAR\\results")
parser.add_argument('--local_e', type=int, default=2,
help='number of local epochs in the federated training phase')
parser.add_argument('--sigma', type=float, default=1.0,
help='sigma (refer to the paper)')
parser.add_argument('--lr', type=float, default=0.001,
help='learning rate')
parser.add_argument('--adapt_num', type=int, default=5,
help='number of adaptation steps (in the fine-tune phase)')
args = parser.parse_args()
all_trans_dict = utils.load_pickle("F:\\www21\\data\\trans_dict_collect.pickle")
main(100, args.dataset, args.result_dir, lr=args.lr, local_e=args.local_e, sigma=args.sigma,
all_trans_dict=all_trans_dict)
# total update rounds=100