-
Notifications
You must be signed in to change notification settings - Fork 0
/
euler018.js
54 lines (43 loc) · 2.09 KB
/
euler018.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
// By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.
// 3
// 7 4
// 2 4 6
// 8 5 9 3
// That is, 3 + 7 + 4 + 9 = 23.
// Find the maximum total from top to bottom of the triangle below:
// 75
// 95 64
// 17 47 82
// 18 35 87 10
// 20 04 82 47 65
// 19 01 23 75 03 34
// 88 02 77 73 07 63 67
// 99 65 04 28 06 16 70 92
// 41 41 26 56 83 40 80 70 33
// 41 48 72 33 47 32 37 16 94 29
// 53 71 44 65 25 43 91 52 97 51 14
// 70 11 33 28 77 73 17 78 39 68 17 57
// 91 71 52 38 17 14 91 43 58 50 27 29 48
// 63 66 04 68 89 53 67 30 73 16 69 87 40 31
// 04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
// NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67, is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o)
var fs = require('fs');
var triangle = fs.readFileSync('euler018.txt').toString().split("\n");
for(i in triangle) {
triangle[i] = triangle[i].match(/\d{2}/g)
for (j in triangle[i]) {
triangle[i][j] = parseInt(triangle[i][j]) // not entirely necessary in JS, but tidier.
}
}
for (i=triangle.length-2; i>=0; i--) {
for (j=0; j<=triangle[i].length-1; j++) {
var value = triangle[i][j] + Math.max(triangle[i+1][j],triangle[i+1][j+1])
triangle[i][j] = value;
}
}
console.log(triangle[0][0])
// Since this problem mentions another, which can have a common solution, I decided to figure out an algorithm that works for both.
// I used this one: https://www.youtube.com/watch?v=6zcFB1nIoq8
// The idea is to take the values on the 2nd row, and check both the values below it, and add the largest of the two to the value.
// continue to do this all the way to the top, and the final value is the largest sum.
// If you want to track the path, you can use a binary number, where 0 represents taking the left number, and 1 represents the right.