Skip to content

Latest commit

 

History

History
84 lines (75 loc) · 5.49 KB

README.md

File metadata and controls

84 lines (75 loc) · 5.49 KB

H-SAM

Paper

Unleashing the Potential of SAM for Medical Adaptation via Hierarchical Decoding
Zhiheng Cheng, Qingyue Wei, Hongru Zhu, Yan Wang, Liangqiong Qu, Wei Shao, and Yuyin Zhou
CVPR 2024
image paper | code

0. Installation

git clone https://github.com/Cccccczh404/H-SAM.git

Please run the following commands to create an environment and obtain requirements.

conda create -n H-SAM python=3.10
conda activate H-SAM
pip install -r requirements.txt

1. Prepare your datasets and pretained model

1.1 Please download Synapse multi-organ CT dataset from the original website (https://www.synapse.org/#!Synapse:syn3193805/wiki/217789) or the preprocessed version (https://drive.google.com/file/d/1zuOQRyfo0QYgjcU_uZs0X3LdCnAC2m3G/view?usp=share_link), unzip the [training set] with resolution 224x224, and put it in <Your folder>. We also prepare the [training set] with resolution 512x512 (https://drive.google.com/file/d/1F42WMa80UpH98Pw95oAzYDmxAAO2ApYg/view?usp=share_link). The 224x224 version of training set is downsampled from the 512x512 version.

1.2 Please download and unzip the [testset] with resolution 512x512 (https://drive.google.com/file/d/1RczbNSB37OzPseKJZ1tDxa5OO1IIICzK/view?usp=share_link) and put it in the ./testset folder. Then, unzip and delete this file.

1.3 Please download the pretrained SAM models from the original SAM repository (https://github.com/facebookresearch/segment-anything), and put them in the ./checkpoints folder.

1.4 Please refer to this README file for the detailed instructions on LA and PROMISE12 dataset

2. Training

Use the train.py file for training models. An example script of is

CUDA_VISIBLE_DEVICES="0,1"  python train.py  --root_path <Your folder>/train_npz_new_224/ --split='train' --batch_size=8 --base_lr=0.0026 --img_size=224 --warmup --AdamW --max_epochs=300 --stop_epoch=300 --vit_name='vit_l' --ckpt='checkpoints/sam_vit_l_0b3195.pth'

To train on LA dataset with only 4 scans, please run the following script

CUDA_VISIBLE_DEVICES="0"  python train.py --root_path <Your folder>/LA/train_npz --output ./results/LA_4/ --split='train' --batch_size=8 --base_lr=0.0028 --img_size=512 --warmup --dice_param=0.9 --AdamW --max_epochs=250 --stop_epoch=250  --num_classes=1 --dataset='LA' --list_dir='./lists/lists_LA_4' --ckpt='checkpoints/sam_vit_b_01ec64.pth'

To train on PROMISE12 dataset with only 3 scans, please run the following script

CUDA_VISIBLE_DEVICES="0"  python train.py --root_path <Your folder>/PROMISE/train_npz --output ./results/PROMISE_3/ --split='train'  --batch_size=8 --base_lr=0.0026 --img_size=512 --warmup --dice_param=0.9 --AdamW --max_epochs=250 --stop_epoch=250 --num_classes=1 --dataset='PROMISE' --list_dir='./lists/lists_PROMISE_3' --ckpt='checkpoints/sam_vit_b_01ec64.pth'

To use the few-shot training strategy with 10% of the training data, please first run the following command to rename the train.txt file.

mv lists/lists_Synapse/train.txt lists/lists_Synapse/train_full.txt

Use the randomly generated 10% training list.

mv lists/lists_Synapse/train_220.txt lists/lists_Synapse/train.txt

Or generate a new training list by running the following command.

python preprocess/make_list.py

An example script under few-shot setting is

CUDA_VISIBLE_DEVICES="0,1"  python train.py  --root_path <Your folder>/train_npz/ --split='train' --batch_size=8 --base_lr=0.0025 --img_size=512 --warmup --AdamW --max_epochs=300 --stop_epoch=300 --vit_name='vit_b' --ckpt='checkpoints/sam_vit_b_01ec64.pth'

3. Testing

Use the test.py file for testing models. An example script is

CUDA_VISIBLE_DEVICES="0" python test.py --is_savenii --lora_ckpt outputs/Synapse_224_pretrain_vit_l_epo300_bs8_lr0.0026/epoch_299.pth --vit_name='vit_l' --ckpt=checkpoints/sam_vit_l_0b3195.pth --img_size=224 --stage=3

3. Pretrained models

CUDA_VISIBLE_DEVICES="0" python test.py --is_savenii --lora_ckpt 220_epoch_299.pth --vit_name='vit_b' --ckpt=checkpoints/sam_vit_b_01ec64.pth --stage=3 --img_size=512

Citation

If you find this code useful in your research, please consider citing:

@inproceedings{cheng2024unleashing,
  title={Unleashing the Potential of SAM for Medical Adaptation via Hierarchical Decoding},
  author={Cheng, Zhiheng and Wei, Qingyue and Zhu, Hongru and Wang, Yan and Qu, Liangqiong and Shao, Wei and Zhou, Yuyin},
  booktitle={CVPR},
  year={2024}
}

Acknowledgement

We appreciate the developers of Segment Anything Model and the provider of the Synapse multi-organ segmentation dataset. Our code of H-SAM is built upon SAMed, and we express our gratitude to these awesome projects.