Skip to content

Latest commit

 

History

History
19 lines (15 loc) · 677 Bytes

File metadata and controls

19 lines (15 loc) · 677 Bytes

alt text

Market-research-for-an-agri-food-company

  1. Data gathering using PESTEL criteria.
  2. PCA for feature reduction and to avoid potential multi-colinearity issues.
  3. Machine learning techniques (KMeans and hierarchical clustering) to create coherent groups.

Processed data:

  • Food availability 2017
  • Population 2000 - 2018
  • Political Stability 2000 - 2018
  • Average exchange rate 2017
  • GDP and GDP per capita 2017
  • Number of KFC and McDonalds Stores per country
  • Distance (Paris to country centroid)

Technologies Used

  • Python 3.9.7 in Jupyter Notebook