-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcifar10resnet.py
320 lines (259 loc) · 11.5 KB
/
cifar10resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import sys, os
CURRENT_TEST_DIR = os.getcwd()
sys.path.append(CURRENT_TEST_DIR + "/..")
import argparse
from datetime import datetime
import numpy as np
if __name__ == '__main__':
import matplotlib
matplotlib.use('Agg')
import torch
import torch.nn as nn
import torch.nn.functional as F
import deadZoneOptimizer as optim
from torchvision import datasets, transforms, models
from torch.utils.data import Dataset, DataLoader
from torch.autograd import Variable
from learningStats import learningStats
from RAdam_master.radam import radam
#import lookahead_pytorch as lookahead
CIFAR10_MEAN = (0.4914, 0.4822, 0.4465)
CIFAR10_STD = (0.2023, 0.1994, 0.2010)
#以下开始resnet18
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(
in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.block_conv=torch.nn.ModuleList()
self.block_conv.append(self.conv1)
self.block_conv.append(self.conv2)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.conv3=nn.Conv2d(in_planes, self.expansion*planes,
kernel_size=1, stride=stride, bias=False)
self.block_conv.append(self.conv3)
self.shortcut = nn.Sequential(self.conv3,
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, num_blocks,robustHandler, num_classes=10):
super(ResNet, self).__init__()
self.robustHandler = robustHandler
self.conv=torch.nn.ModuleList()
self.fc=torch.nn.ModuleList()
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3,
stride=1, padding=1, bias=False)
self.conv.append(self.conv1)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.linear = nn.Linear(512*block.expansion, num_classes)
self.fc.append(self.linear)
for conv in self.conv:
self.robustHandler.register(conv)
for fc in self.fc:
self.robustHandler.register(fc)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
temp_block=block(self.in_planes, planes, stride)
layers.append(temp_block)
self.conv.extend(temp_block.block_conv)
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def ResNet18(robustHandler):
return ResNet(BasicBlock, [2, 2, 2, 2], robustHandler)
#以上为resnet18
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-cuda', default=-1, type=int, help='Cuda device to use (-1 for none)')
parser.add_argument('-gpu', type=int, default=[0], nargs='+', help='which gpu(s) to use')
parser.add_argument('-b', type=int, default=128, help='batch size for dataloader')
parser.add_argument('-warm', type=int, default=1, help='warm up training phase')
parser.add_argument('-lr', type=float, default=0.1, help='initial learning rate')
parser.add_argument('-exp', type=str, default='', help='experiment differentiater string')
parser.add_argument('-seed', type=int, default=None, help='random seed of the experiment')
parser.add_argument('-optim', type=str, default='robust', help='optimizer to use')
parser.add_argument('-epoch', type=int, default=200, help='number of epochs to run')
args = parser.parse_args()
identifier = args.exp
if args.seed is not None:
torch.manual_seed(args.seed)
identifier += '_{}{}'.format(args.optim, args.seed)
trainedFolder = 'Trained' + identifier
logsFolder = 'Logs' + identifier
print(trainedFolder)
os.makedirs(trainedFolder, exist_ok=True)
os.makedirs(logsFolder , exist_ok=True)
with open(trainedFolder + '/args.txt', 'wt') as f:
for arg, value in sorted(vars(args).items()):
f.write('{} : {}\n'.format(arg, value))
robustHandler = optim.deadZoneHandle(eta=0.5, mu=0.01, rhoBar=5, eps=2e-4)
# Define the cuda device to run the code on.
print('Using GPUs {}'.format(args.gpu))
if args.cuda == -1:
device=torch.device('cpu')
else:
device = torch.device('cuda:{}'.format(args.gpu[0]))
# Create network instance.
if len(args.gpu) == 1:
net = ResNet18(robustHandler).to(device)
module = net
else:
net = torch.nn.DataParallel(ResNet18(robustHandler).to(device), device_ids=args.gpu)
module = net.module
# Define optimizer module.
if args.optim == 'sgd':
optimizer = torch.optim.SGD(net.parameters(), lr = args.lr, momentum=0.9, weight_decay=5e-4)
elif args.optim == 'robust':
optimizer = optim.robustDeadZone(net.parameters(), module.robustHandler, momentum=0.9, weight_decay=5e-4,)
elif args.optim == 'adam':
optimizer = torch.optim.Adam(net.parameters(), lr = args.lr, weight_decay=5e-4)
elif args.optim == 'radam':
optimizer = radam.RAdam(net.parameters(), lr = args.lr, weight_decay=5e-4)
else:
raise Exception('Optimizer {} not supported\!'.format(args.optim))
# Dataset and dataLoader instances.
# MNIST Dataset
trainingSet = datasets.CIFAR10(
root='../data/',
train=True,
transform=transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(15),
transforms.ToTensor(),
transforms.Normalize(CIFAR10_MEAN, CIFAR10_STD),
]),
download=True,
)
testingSet = datasets.CIFAR10(
root='../data/',
train=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(CIFAR10_MEAN, CIFAR10_STD),
]),
)
trainLoader = DataLoader(dataset=trainingSet, batch_size=args.b, shuffle=True, num_workers=1)
testLoader = DataLoader(dataset=testingSet , batch_size=args.b, shuffle=True, num_workers=1)
# Learning stats instance.
stats = learningStats()
# training loop
milestones = [60, 120, 160]
initialEps = robustHandler.eps
for epoch in range(args.epoch):
tSt = datetime.now()
if args.optim == 'robust':
# if epoch > milestones[0]:
# robustHandler.eps = initialEps * (args.epoch-epoch)/(args.epoch-milestones[0])
# if epoch in [30, 100, 160]:
# for param_group in optimizer.param_groups:
# print('Rho increased from', robustHandler.rhoBar)
# stats.linesPrinted = 0
# robustHandler.rhoBar *= 10
# # robustHandler.eta *= 0.2
pass
else:
if epoch in milestones:
for param_group in optimizer.param_groups:
print('Learning rate reduction from', param_group['lr'])
stats.linesPrinted = 0
param_group['lr'] *= 0.2
# Training loop.
for i, (input, label) in enumerate(trainLoader, 0):
net.train()
# # Warmup for adam
# if args.optim == 'adam' and epoch < 5:
# for param_group in optimizer.param_groups:
# param_group['lr'] = args.lr * (i + epoch*len(trainLoader)) / 5 *len(trainLoader)
# # Warmup for rhobar
# if args.optim == 'robust' and epoch < 5:
# for param_group in optimizer.param_groups:
# robustHandler.eta = 0.5 * (1 + np.exp(-(i*epoch/5/len(trainLoader) + 1)))
input = input.to(device)
output = net.forward(input)
output.retain_grad()
prediction = output.data.max(1, keepdim=True)[1].cpu().flatten()
stats.training.correctSamples += torch.sum( prediction == label ).data.item()
stats.training.numSamples += len(label)
loss = F.cross_entropy(output, label.to(device))
optimizer.zero_grad()
loss.backward()
if args.optim == 'robust':
optimizer.step(error=output.grad)
else:
optimizer.step()
stats.training.lossSum += loss.cpu().data.item()
lr = []
if args.optim == 'robust':
for p in module.parameters():
if hasattr(p, 'rn'):
lr.append('Layer :{:3d}, lr : {:.6e}, R : {}'.format(p.rn.layer, p.rn.learningRate, p.rn.rNorm))
# Display training stats.
stats.print(
epoch, i,
(datetime.now() - tSt).total_seconds() / (i+1) / trainLoader.batch_size,
header = lr,
)
# Testing loop.
for i, (input, label) in enumerate(testLoader, 0):
net.eval()
with torch.no_grad():
input = input.to(device)
output = net.forward(input)
prediction = output.data.max(1, keepdim=True)[1].cpu().flatten()
stats.testing.correctSamples += torch.sum( prediction == label ).data.item()
stats.testing.numSamples += len(label)
loss = F.cross_entropy(output, label.to(device))
stats.testing.lossSum += loss.cpu().data.item()
lr = []
if args.optim == 'robust':
for p in module.parameters():
if hasattr(p, 'rn'):
lr.append('Layer :{:3d}, lr : {:.6e}'.format(p.rn.layer, p.rn.learningRate))
# Display training stats.
stats.print(
epoch, i,
header = lr,
)
# scheduler.step(stats.testing.accuracy())
# Update stats.
stats.update()
stats.plot(saveFig=True, path= trainedFolder + '/')
if stats.testing.bestAccuracy is True: torch.save(module.state_dict(), trainedFolder + '/network.pt')
if epoch%100 == 0:
torch.save(
{
'net': module.state_dict(),
'optimizer': optimizer.state_dict(),
},
logsFolder + '/checkpoint%d.pt'%(epoch)
)
stats.save(trainedFolder + '/')