-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathpreprocess_experiments.py
312 lines (253 loc) · 15.1 KB
/
preprocess_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import cv2
import numpy as np
from aux_tools import str2bool, _min, _max, ensure_folder_exists, format_axis_as_timedelta, JointEnum, save_datetime_to_h5, ExperimentTraverser, EXPERIMENT_DATETIME_STR_FORMAT
from datetime import datetime
from multiprocessing import Pool, cpu_count
import traceback
import glob
import argparse
import h5py
import json
import os
class BackgroundSubtractor:
def __init__(self):
self.fgbg = cv2.bgsegm.createBackgroundSubtractorGSOC()
self.fgbg2 = cv2.bgsegm.createBackgroundSubtractorMOG()
self.fgbg3 = cv2.bgsegm.createBackgroundSubtractorGMG()
self.kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
def runGMG(self, frame):
mask = self.fgbg3.apply(frame)
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, self.kernel)
return mask
def runMOG(self, frame):
return self.fgbg2.apply(frame)
def runGSOC(self, frame):
return self.fgbg.apply(frame)
def run(self, frame):
return self.runGSOC(frame)
HDF5_FRAME_NAME_FORMAT = "frame{:05d}"
HDF5_POSE_GROUP_NAME = "pose"
HDF5_HANDS_GROUP_NAME = "hands"
HDF5_ORIG_WEIGHT_GROUP_NAME = "orig_weights"
HDF5_WEIGHT_GROUP_NAME = "weight_{}"
HDF5_WEIGHT_T_NAME = "t"
HDF5_WEIGHT_DATA_NAME = "w"
BACKGROUND_MASKS_FOLDER_NAME = "background_masks"
def preprocess_weight(parent_folder, do_tare=False, visualize=False):
from read_dataset import read_weights_data
from matplotlib import pyplot as plt
print("Processing weights at {}".format(parent_folder))
t_start = os.path.basename(parent_folder)
h5_filename = os.path.join(parent_folder, "weights_{}.h5".format(t_start))
if os.path.exists(h5_filename):
print("File {} exists, not preprocessing!".format(h5_filename))
return
weight_t, weight_data, weights_orig = read_weights_data(parent_folder, do_tare=do_tare)
with h5py.File(h5_filename, 'w') as f_hdf5:
save_datetime_to_h5(weight_t, f_hdf5, HDF5_WEIGHT_T_NAME)
f_hdf5.create_dataset("w", data=weight_data)
# Save original weight info as well, just in case
orig_weights_group = f_hdf5.create_group(HDF5_ORIG_WEIGHT_GROUP_NAME)
for weight_id, weight_info in weights_orig.items():
orig_weight = orig_weights_group.create_group(HDF5_WEIGHT_GROUP_NAME.format(weight_id))
save_datetime_to_h5(weight_info['t'], orig_weight, HDF5_WEIGHT_T_NAME)
orig_weight.create_dataset(HDF5_WEIGHT_DATA_NAME, data=weight_info['w'])
if visualize:
fig = plt.figure(figsize=(4, 2))
ax = fig.subplots()
ax.plot([(t - weight_t[0]).total_seconds() for t in weight_t], weight_data)
ax.set_title('Load cell #{}'.format(weight_id))
ax.set_ylabel('Weight (g)')
format_axis_as_timedelta(ax.xaxis)
fig.show()
print("Done processing weights as '{}'! t_min={}; t_max={}; N={}".format(h5_filename, weight_t[0], weight_t[-1], weight_data.shape))
def preprocess_vision_object_detection(video_filename, gpu_id, config_file="configs/aim3s.yaml", confidence_thresh=0.1, categories_file="../aim3s_dataset/aim3s.names", generate_video=True):
from maskrcnn_benchmark.config import cfg
from predictor_skus import SKUsDemo
video_prefix = os.path.splitext(video_filename)[0] # Remove extension
file_prefix = video_prefix + "_objdet"
# Load MaskRCNN config
cfg.merge_from_file(config_file)
cfg.MODEL.DEVICE = gpu_id # Run the model on the specified gpu
#cfg.freeze()
# Load category names
with open(categories_file) as f:
categories = f.readlines()
# Prepare object that handles inference plus adds predictions on top of image
model = SKUsDemo(
cfg,
categories=categories,
confidence_threshold=confidence_thresh,
)
# Initialize video
v = cv2.VideoCapture(video_filename)
N = v.get(cv2.CAP_PROP_FRAME_COUNT)
n = 0
if generate_video:
v_out = cv2.VideoWriter("{}.mp4".format(file_prefix), cv2.VideoWriter_fourcc(*'mp4v'), 25.0,
(int(v.get(cv2.CAP_PROP_FRAME_WIDTH)), int(v.get(cv2.CAP_PROP_FRAME_HEIGHT))))
# Process video
with h5py.File("{}.h5".format(file_prefix), 'w') as f:
while n < N: # Read every frame
images = []
while n < N and len(images) < 15: # Read a block of frames
ok, img = v.read()
assert ok, "Couldn't read frame from video {}".format(video_filename)
images.append(img)
n += 1
# Process frame block
preds = model.compute_prediction_list(images)
for i, predictions in enumerate(preds):
predictions = model.select_top_predictions(predictions)
f.create_dataset(HDF5_FRAME_NAME_FORMAT.format(n-len(preds)+i+1), data=predictions.get_field("scores_all").numpy())
if generate_video:
img = model.overlay_boxes(images[i], predictions)
img = model.overlay_class_names(img, predictions)
v_out.write(img)
# Display progress
#if n % 25 == 0:
print("Processed frame {}/{} for video {} ({:.2f}%)".format(n, N, video_filename, 100.*n/N))
if generate_video:
v_out.release()
def preprocess_vision(video_filename, pose_model_folder, wrist_thresh=0.2, crop_half_w=100, crop_half_h=100):
print("Processing video '{}'...".format(video_filename))
video_prefix = os.path.splitext(video_filename)[0] # Remove extension
pose_prefix = video_prefix + "_pose"
mask_prefix = os.path.join(os.path.dirname(video_prefix), BACKGROUND_MASKS_FOLDER_NAME, os.path.basename(video_prefix) + "_mask")
ensure_folder_exists(os.path.dirname(mask_prefix)) # Create folder if it didn't exist
# Run Openpose to find people and their poses
if os.path.exists(pose_prefix) and len(os.listdir(pose_prefix)) > 0:
print("Folder '{}' exists, not running Openpose!".format(pose_prefix))
else:
from openpose import pyopenpose as op
openpose_params = {
"model_folder": pose_model_folder,
"video": video_filename,
"write_video": pose_prefix + ".mp4",
"write_json": pose_prefix, # Will create the folder and save a json per frame in the video
"display": 0,
"render_pose": 1, # 1 for CPU (slightly faster), 2 for GPU
}
openpose_wrapper = op.WrapperPython(3)
openpose_wrapper.configure(openpose_params)
openpose_wrapper.execute() # Blocking call
print("Openpose done processing video '{}'!".format(video_filename))
# Initialize background subtractor
video_orig = cv2.VideoCapture(video_filename)
video_mask = cv2.VideoWriter("{}_mask.mp4".format(video_prefix), cv2.VideoWriter_fourcc(*'avc1'), 25.0,
(int(video_orig.get(cv2.CAP_PROP_FRAME_WIDTH)), int(video_orig.get(cv2.CAP_PROP_FRAME_HEIGHT))))
bgnd_subtractor = BackgroundSubtractor()
# Postprocess json files (one per frame) + combine into a single hdf file, as well as compute bgnd subtraction mask
with h5py.File(video_prefix + ".h5", 'a') as f_hdf5:
if HDF5_POSE_GROUP_NAME in f_hdf5: del f_hdf5[HDF5_POSE_GROUP_NAME] # OVERWRITE (delete if already existed)
if HDF5_HANDS_GROUP_NAME in f_hdf5: del f_hdf5[HDF5_HANDS_GROUP_NAME]
pose = f_hdf5.create_group(HDF5_POSE_GROUP_NAME)
hands = f_hdf5.create_group(HDF5_HANDS_GROUP_NAME)
# Parse every json (every frame of video_orig)
for frame_i,json_filename in enumerate(sorted(os.listdir(pose_prefix))):
frame_i_str = HDF5_FRAME_NAME_FORMAT.format(frame_i+1)
_, frame_img = video_orig.read()
# Run background subtractor
background_mask = bgnd_subtractor.run(frame_img)
background_removed_img = cv2.bitwise_and(frame_img, frame_img, mask=background_mask)
video_mask.write(background_removed_img)
# Parse frame json
with open(os.path.join(pose_prefix, json_filename)) as f_json:
data = json.load(f_json)
# Parse pose for each person found
hands_info = []
poses = []
for i_person,p in enumerate(data["people"]):
keypoints = np.reshape(p["pose_keypoints_2d"], (-1,3))
poses.append(keypoints)
# Look for hands with high enough confidence and crop an image around each one
for i_wrist in (JointEnum.LWRIST.value, JointEnum.RWRIST.value):
if keypoints[i_wrist,-1] > wrist_thresh: # Found a wrist with high enough confidence
center = keypoints[i_wrist, 0:2]
hands_info.append(np.hstack((center, i_person, i_wrist))) # [x, y, person_id, wrist_id] (wrist_id see JointEnum, 4=Right;7=Left)
pose.create_dataset(frame_i_str, data=poses)
hands.create_dataset(frame_i_str, data=hands_info)
cv2.imwrite("{}_{}.png".format(mask_prefix, frame_i_str), background_mask)
video_mask.release()
print("Done processing video '{}'!".format(video_filename))
def _crop_image(img, center, half_w, half_h):
center_x = int(center[0])
center_y = int(center[1])
x_min = _max(center_x-half_w, 0)
x_max = _min(center_x+half_w, img.shape[1]-1)
y_min = _max(center_y-half_h, 0)
y_max = _min(center_y+half_h, img.shape[0]-1)
return img[y_min:y_max+1, x_min:x_max+1, :]
class ExperimentPreProcessor(ExperimentTraverser):
def __init__(self, main_folder, start_datetime=datetime.min, end_datetime=datetime.max, do_weight=True, do_pose=True, do_objdet=True, pose_model_folder="openpose-models/", num_processes_weight=cpu_count(), num_processes_vision=3, num_processes_objdet=4, num_gpus=3):
super(ExperimentPreProcessor, self).__init__(main_folder, start_datetime, end_datetime)
self.do_weight = do_weight
self.do_objdet = do_objdet
self.do_pose = do_pose
self.pose_model_folder = pose_model_folder
self.pool_weight = Pool(processes=num_processes_weight) if do_weight else None
self.pool_vision = Pool(processes=num_processes_vision) if do_pose else None
self.pool_objdet = [Pool(processes=num_processes_objdet) if do_objdet else None for i in range(num_gpus)]
self.weight_tasks_state = []
self.vision_tasks_state = []
self.num_weight_tasks_done = 0
self.num_vision_tasks_done = 0
self.next_gpu = 0
self.num_gpus = num_gpus
def _task_done_cb(self, is_weight):
if is_weight:
self.num_weight_tasks_done += 1
n = self.num_weight_tasks_done
total = len(self.weight_tasks_state)
str_type = "Weight"
else:
self.num_vision_tasks_done += 1
n = self.num_vision_tasks_done
total = len(self.vision_tasks_state)
str_type = "Vision"
print("{} tasks done: {}/{} ({:5.2f}%)".format(str_type, n, total, 100*n/total))
def process_subfolder(self, f):
parent_folder = os.path.join(self.main_folder, f)
# Tell the weight preprocessor to merge all weight sensors into a single h5 file
if self.do_weight:
task_state = self.pool_weight.apply_async(preprocess_weight, (parent_folder,), callback=lambda _: self._task_done_cb(is_weight=True))
self.weight_tasks_state.append(task_state)
# Tell the pose preprocessor to run pose estimation on every camera video
for video in glob.glob(os.path.join(parent_folder, "cam*_{}.mp4".format(f))):
if self.do_pose:
kwds = {"crop_half_w": 200, "crop_half_h": 200} if os.path.basename(video).startswith("cam4") else {} # Top-down camera is closer -> Crop bigger window
task_state = self.pool_vision.apply_async(preprocess_vision, (video, self.pose_model_folder), kwds, callback=lambda _: self._task_done_cb(is_weight=False))
self.vision_tasks_state.append(task_state)
if self.do_objdet:
task_state = self.pool_objdet[self.next_gpu].apply_async(preprocess_vision_object_detection, (video, self.next_gpu), callback=lambda _: self._task_done_cb(is_weight=False))
self.next_gpu = (self.next_gpu+1) % self.num_gpus
self.vision_tasks_state.append(task_state)
def on_done(self):
print("Preprocessing tasks enqueued, waiting for them to complete!")
for tasks_state in (self.weight_tasks_state, self.vision_tasks_state):
for i,task_state in enumerate(tasks_state):
try:
task_state.get()
except Exception as e:
traceback.print_exc()
# task_state.wait()
# if not task_state.successful():
# print("Uh oh... {} task {}: {}".format("Weight" if tasks_state==self.weight_tasks_state else "Vision", i+1, task_state._value))
print("All done!")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("folder", default="Dataset/Evaluation", help="Folder containing the experiment(s) to preprocess")
parser.add_argument("-s", "--start-datetime", default="", help="Only preprocess experiments collected later than this datetime (format: {}; empty for no limit)".format(EXPERIMENT_DATETIME_STR_FORMAT))
parser.add_argument("-e", "--end-datetime", default="", help="Only preprocess experiments collected before this datetime (format: {}; empty for no limit)".format(EXPERIMENT_DATETIME_STR_FORMAT))
parser.add_argument('-w', "--do-weight", default=True, type=str2bool, help="Whether or not to pre-process weight")
parser.add_argument('-p', "--do-pose", default=True, type=str2bool, help="Whether or not to pre-process human pose")
parser.add_argument('-o', "--do-objdet", default=True, type=str2bool, help="Whether or not to pre-process videos with object detection")
parser.add_argument('-pm', "--pose-model-folder", default="openpose-models/", help="Human pose model folder location (can be a symlink)")
parser.add_argument('-nw', "--num-processes-weight", default=cpu_count(), type=int, help="Number of processes to spawn for weight preprocessing")
parser.add_argument('-nv', "--num-processes-vision", default=3, type=int, help="Number of processes to spawn for vision preprocessing")
parser.add_argument('-no', "--num-processes-objdet", default=4, type=int, help="Number of processes to spawn for object detection preprocessing (will be multiplied by the number of GPUs)")
parser.add_argument('-ng', "--num-gpus", default=1, type=int, help="Number of GPUs available")
args = parser.parse_args()
t_start = datetime.strptime(args.start_datetime, EXPERIMENT_DATETIME_STR_FORMAT) if len(args.start_datetime) > 0 else datetime.min
t_end = datetime.strptime(args.end_datetime, EXPERIMENT_DATETIME_STR_FORMAT) if len(args.end_datetime) > 0 else datetime.max
ExperimentPreProcessor(args.folder, t_start, t_end, args.do_weight, args.do_pose, args.do_objdet, args.pose_model_folder, args.num_processes_weight, args.num_processes_vision, args.num_processes_objdet, args.num_gpus).run()