-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathground_truth_labeler.py
393 lines (340 loc) · 20.2 KB
/
ground_truth_labeler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
from threading import Event
from generate_video import generate_multicam_video
from aux_tools import str2bool, str_to_datetime, date_range, time_to_float, format_axis_as_timedelta, ExperimentTraverser, EXPERIMENT_DATETIME_STR_FORMAT
from datetime import datetime, timedelta
from matplotlib import pyplot as plt
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from queue import Queue
import os
import cv2
import numpy as np
import h5py
import json
import argparse
# Import UI
try:
import Tkinter as tk
import tkMessageBox as messagebox
except ImportError: # Python 3
import tkinter as tk
from tkinter import messagebox
from MultiColumnListbox import MultiColumnListbox
from ResizableImageCanvas import ResizableImageCanvas
class VideoAndWeightHandler:
TIME_INCREMENT = timedelta(seconds=0.1) # How much to shift the time offset cameras-weights from keyboard input (ASDW)
FRAME_INCREMENT = 8 # How many frames to skip forward/backward on keyboard input (arrow keys)
LEFT_RIGHT_MULTIPLIER = 10 # How much larger the skip is when using left-right (A-D) vs up-down (or W-S)
def __init__(self, experiment_base_folder, cb_event_start_or_end, user_wants_to_exit, update_xaxis=False):
self.cb_event_start_or_end = cb_event_start_or_end
self.user_wants_to_exit = user_wants_to_exit
self.update_xaxis = update_xaxis # For faster plot update, set this to False and the weight's xaxis will be static (-0:03 -0:02 ... 0:03)
self.n = -1 # Frame number
self.is_paused = False
self.refresh_weight = True
self.do_skip_frames = False
self.t_lims = 3 # How many seconds of weight to show on either side of curr_t
self.initial_scale = 0.5 # Rescale video_img before converting to Tkinter image (~3X faster to render)
self.keys_pressed = Queue()
self.video_canvas = None
self.video_tk_img = None
self.weight_canvas = None
self.bg_cache = None
# Load video info
video_in_filename = generate_multicam_video(experiment_base_folder)
self.video_in = cv2.VideoCapture(video_in_filename)
with h5py.File(os.path.splitext(video_in_filename)[0] + ".h5", 'r') as h5_cam:
self.t_cam = np.array(list(date_range(str_to_datetime(h5_cam.attrs['t_start']), str_to_datetime(h5_cam.attrs['t_end']), timedelta(seconds=1.0/h5_cam.attrs['fps']))))
self.video_dims = np.array([self.video_in.get(cv2.CAP_PROP_FRAME_HEIGHT), self.video_in.get(cv2.CAP_PROP_FRAME_WIDTH)]).astype(int)
self.video_initial_dims = (self.initial_scale * self.video_dims).astype(int)
self.weight_dims = np.array([self.video_initial_dims[0], 350]).astype(int)
# Read all weight sensors for the full experiment duration at once
t_experiment_start = experiment_base_folder.rsplit('/', 1)[-1] # Last folder in the path should indicate time at which experiment started
with h5py.File(os.path.join(experiment_base_folder, "weights_{}.h5".format(t_experiment_start)), 'r') as h5_weights:
self.weight_t = np.array([str_to_datetime(t) for t in h5_weights['t_str']])
weight_data = h5_weights['w'][:]
w = np.sum(weight_data, axis=1)
t_w = time_to_float(self.weight_t, self.weight_t[0])
# Manually align weight and cam timestamps (not synced because OSX and Linux use different NTP servers)
self.weight_to_cam_t_offset = self.weight_t[0] + timedelta(seconds=13) # Initialize the offset to ~13s (empirical)
# Set up matplotlib figure
self.fig = plt.figure(figsize=self.weight_dims[::-1]/100.0)
num_subplots = len(w)
ax = self.fig.subplots(num_subplots, 1, sharex=True, squeeze=False)
self.curr_t_lines = []
for i in range(num_subplots):
shelf_i = num_subplots - (i+1) # Shelf 1 is at the bottom
# Plot weight and a vertical line at currT. Draw invisible: we'll copy the canvas bgnd, then make it visible
ax[i,0].plot(t_w, w[shelf_i])
self.curr_t_lines.append(ax[i,0].axvline(0, linestyle='--', color='black', linewidth=1))
ax[i,0].set_title('Shelf {}'.format(shelf_i+1), fontsize=10, pad=2)
ax[i,0].set_xlim(-self.t_lims, self.t_lims)
format_axis_as_timedelta(ax[i,0].xaxis)
# Render the figure and save background so updating the plot can be much faster (using blit instead of draw)
self.update_bg_cache()
# Allocate memory space for a video frame and a downsampled copy
self.video_img = np.zeros((self.video_dims[0], self.video_dims[1], 3), dtype=np.uint8)
def update_bg_cache(self, resize_event=None):
if resize_event is not None:
self.weight_canvas.resize(resize_event) # Forward event to figure canvas so it resizes the figure
axes = self.fig.get_axes()
orig_xlims = axes[-1].get_xlim()
def set_visibility(is_visible):
for i, ax in enumerate(axes):
for l in ax.lines:
l.set_visible(is_visible)
if is_visible: ax.draw_artist(l) # Will need to rerender
# update_xaxis=False means weight's xaxis will be static (always show: -0:03 -0:02 ... 0:03)
# update_xaxis=True means we'll rerender the xaxis on every replot -> Need to hide the labels before copying the canvas bgnd
if self.update_xaxis:
is_last = (i == len(axes)-1)
ax.tick_params(axis='x', which="both", bottom=is_visible, labelbottom=is_last and is_visible)
if is_visible: ax.draw_artist(ax.xaxis)
else:
ax.set_xlim((-self.t_lims, self.t_lims) if not is_visible else orig_xlims)
set_visibility(False) # Make axes and lines invisible
plt.tight_layout(0, 0.6)
self.fig.canvas.draw() # Rerender full figure
self.bg_cache = self.fig.canvas.copy_from_bbox(self.fig.bbox) # Copy the whole canvas
set_visibility(True) # Make everything visible again
self.fig.canvas.blit() # Rerender only necessary parts
def update(self):
# Update video frame (if needed)
if not self.is_paused or self.do_skip_frames:
# Grab next frame
self.n += 1
ok = self.video_in.read(self.video_img[:, :self.video_dims[1], :])
assert ok, "Couldn't read frame {}!".format(self.n)
print("Read frame {} out of {} frames ({:6.2f}%)".format(self.n+1, len(self.t_cam), 100.0*(self.n+1)/len(self.t_cam)))
# Render the frame
self.video_canvas.update_image(self.video_img)
# Update weight plot (if needed)
if self.refresh_weight:
# Update current time and redraw whatever needed
curr_t = (self.t_cam[self.n]-self.weight_to_cam_t_offset).total_seconds()
self.fig.canvas.restore_region(self.bg_cache) # We'll render on top of our cached bgnd (contains subplot frames, shelf number [title], ylabels, etc)
for l in self.curr_t_lines: l.set_xdata(curr_t) # Update time cursor (dashed black lines)
for ax in self.fig.get_axes():
ax.set_xlim(curr_t-self.t_lims, curr_t+self.t_lims) # Update xlims to be centered on current time
for l in ax.lines: ax.draw_artist(l) # Redraw all lines
if self.update_xaxis: # Redraw xlabels if needed
ax.draw_artist(ax.xaxis)
# Refresh weight plot (using blitting for a ~5X speedup vs canvas.draw())
self.fig.canvas.blit()
# Process key presses
self.handle_kb_input()
if self.do_skip_frames:
self.video_in.set(cv2.CAP_PROP_POS_FRAMES, self.n)
self.n = int(self.video_in.get(cv2.CAP_PROP_POS_FRAMES)) # Don't let it go over the length of the video
def handle_kb_input(self):
self.do_skip_frames = False
self.refresh_weight = False
while not self.keys_pressed.empty():
key_info = self.keys_pressed.get()
k = key_info.keysym.lower()
if k == 'left': # Left arrow (at least on my Mac)
self.n -= self.LEFT_RIGHT_MULTIPLIER*self.FRAME_INCREMENT
self.do_skip_frames = True
self.refresh_weight = True
elif k == 'right': # Right arrow
self.n += self.LEFT_RIGHT_MULTIPLIER*self.FRAME_INCREMENT
self.do_skip_frames = True
self.refresh_weight = True
elif k == 'up': # Up arrow
self.n += self.FRAME_INCREMENT
self.do_skip_frames = True
self.refresh_weight = True
elif k == 'down': # Down arrow
self.n -= self.FRAME_INCREMENT
self.do_skip_frames = True
self.refresh_weight = True
elif k == 'a':
self.weight_to_cam_t_offset -= self.LEFT_RIGHT_MULTIPLIER*self.TIME_INCREMENT
self.refresh_weight = True
elif k == 'd':
self.weight_to_cam_t_offset += self.LEFT_RIGHT_MULTIPLIER*self.TIME_INCREMENT
self.refresh_weight = True
elif k == 'w':
self.weight_to_cam_t_offset -= self.TIME_INCREMENT
self.refresh_weight = True
elif k == 's':
self.weight_to_cam_t_offset += self.TIME_INCREMENT
self.refresh_weight = True
elif k == 'b':
self.cb_event_start_or_end(True, self.t_cam[self.n])
elif k == 'n':
self.cb_event_start_or_end(False, self.t_cam[self.n])
elif k == 'space':
self.is_paused = not self.is_paused
elif k == 'escape': # Don't exit on unrecognized keys if labeling ground truth
print('Esc pressed, exiting!')
self.user_wants_to_exit.set()
self.refresh_weight = self.refresh_weight or not self.is_paused
class GroundTruthLabelerWindow(tk.Tk):
VIDEO_AND_WEIGHT_UPDATE_PERIOD = 10 # msec
WIN_PAD = 10
GRID_PAD = 3 # 3px between consecutive items in a hor/vert grid (e.g. between video feed and weight plot)
def __init__(self, experiment_base_folder):
super(GroundTruthLabelerWindow, self).__init__()
self.weight_to_cam_t_offset = None
self.t_offset_float = 0
self.user_wants_to_exit = Event()
self.video_and_weight = VideoAndWeightHandler(experiment_base_folder, self.on_set_event_time_start_or_end, self.user_wants_to_exit)
video_canvas_size = self.video_and_weight.video_initial_dims
weight_canvas_size = self.video_and_weight.weight_dims
# Load product info
with open("Dataset/product_info.json", 'r') as f:
self.product_info = json.load(f)['products']
options = tuple((p['id'], p['name']) for p in self.product_info)
column_headers = ("Time start", "Time end", "Pickup?", "Item ID", "Item name", "Quantity")
column_widths = (186, 186, 50, 48, -1, 55)
# Setup ui
self.title("Ground truth labeler")
win_size = np.array((video_canvas_size[1] + weight_canvas_size[1] + 2*self.WIN_PAD + 2*self.GRID_PAD, video_canvas_size[0]+200))
win_offs = (np.array((self.winfo_screenwidth(), self.winfo_screenheight())) - win_size)/2
self.geometry("{s[0]}x{s[1]}+{o[0]}+{o[1]}".format(s=win_size.astype(int), o=win_offs.astype(int)))
self.protocol("WM_DELETE_WINDOW", self.on_closing)
self.ui_container = tk.Frame(self)
self.ui_container.pack(fill='both', expand=True, padx=self.WIN_PAD, pady=self.WIN_PAD)
# Variables
self.quantity = tk.IntVar(self, 1)
self.selected_product = tk.Variable(self, options[0])
self.is_pickup = tk.BooleanVar(self, True)
self.t_start = None
self.t_end = None
self.events = []
# Widgets
self.video_and_weight_container = tk.Frame(self)
self.video_and_weight_container.grid(row=0, column=0, columnspan=6, sticky='nesw', ipady=self.GRID_PAD/2, in_=self.ui_container)
self.video_canvas = ResizableImageCanvas(master=self, width=video_canvas_size[1], height=video_canvas_size[0], highlightthickness=0)
self.video_canvas.grid(row=0, column=0, sticky='nesw', in_=self.video_and_weight_container)
self.weight_canvas = FigureCanvasTkAgg(self.video_and_weight.fig, master=self)
self.weight_canvas.get_tk_widget().grid(row=0, column=1, sticky='ns', padx=(self.WIN_PAD, 0), in_=self.video_and_weight_container)
self.weight_canvas.get_tk_widget().bind("<Configure>", self.video_and_weight.update_bg_cache)
self.video_and_weight.video_canvas = self.video_canvas
self.video_and_weight.weight_canvas = self.weight_canvas
self.lst_events = MultiColumnListbox(column_headers, master=self, height=5)
for i,w in enumerate(column_widths):
if w > 0:
self.lst_events.tree.column(i, width=w, stretch=False)
self.lst_events.container.grid(row=1, column=0, columnspan=6, pady=self.GRID_PAD, sticky='nesw', in_=self.ui_container)
num_quantity = tk.Spinbox(self, from_=1, to_=5, width=1, borderwidth=0, textvariable=self.quantity)
num_quantity.grid(row=2, rowspan=2, column=0, in_=self.ui_container)
drp_product = tk.OptionMenu(self, self.selected_product, *options)
drp_product.grid(row=2, rowspan=2, column=1, sticky='ew', ipadx=10, in_=self.ui_container)
opt_pickup = tk.Radiobutton(self, text="Pick up", variable=self.is_pickup, value=True)
opt_pickup.grid(row=2, column=2, sticky='ew', ipadx=10, in_=self.ui_container)
opt_pickup = tk.Radiobutton(self, text="Put back", variable=self.is_pickup, value=False)
opt_pickup.grid(row=3, column=2, sticky='ew', ipadx=0, in_=self.ui_container)
tk.Label(self, text="Start:").grid(row=2, column=3, sticky='nsew', in_=self.ui_container)
tk.Label(self, text="End:").grid(row=3, column=3, sticky='nsew', in_=self.ui_container)
self.txt_t_start = tk.Text(self, state=tk.DISABLED, height=1, width=26)
self.txt_t_start.grid(row=2, column=4, sticky='nsew', in_=self.ui_container)
self.txt_t_end = tk.Text(self, state=tk.DISABLED, height=1, width=26)
self.txt_t_end.grid(row=3, column=4, sticky='nsew', in_=self.ui_container)
self._update_time() # Initialize their text
btn_add_event = tk.Button(self, text="Add event", command=self.add_event)
btn_add_event.grid(row=2, rowspan=2, column=5, in_=self.ui_container)
# Event handling
self.bind('<KeyPress>', self.video_and_weight.keys_pressed.put)
self.lst_events.tree.bind('<KeyPress>', self.remove_event)
# Make grids expandable on window resize
self.ui_container.grid_rowconfigure(0, weight=10, minsize=200)
self.ui_container.grid_rowconfigure(1, weight=1, minsize=50)
self.ui_container.grid_columnconfigure(1, weight=1)
self.video_and_weight_container.grid_columnconfigure(0, weight=1)
self.video_and_weight_container.grid_rowconfigure(0, weight=1)
def run(self):
# Load the first image
self.update()
self.update_canvas()
# Run main loop
self.mainloop()
# Save final offset values
self.weight_to_cam_t_offset = self.video_and_weight.weight_to_cam_t_offset
self.t_offset_float = (self.video_and_weight.weight_t[0]-self.weight_to_cam_t_offset).total_seconds()
def on_set_event_time_start_or_end(self, is_start, t):
if is_start:
self.t_start = t
else:
self.t_end = t
self._update_time()
def update_canvas(self):
# Update video frame and weight plot
self.video_and_weight.update()
# Check if user pressed Escape
if self.user_wants_to_exit.is_set():
self.on_closing()
else:
self.after(self.VIDEO_AND_WEIGHT_UPDATE_PERIOD, self.update_canvas)
def on_closing(self):
# Save state of the events list before destroying
events_info = (self.lst_events.tree.item(child, values=None) for child in self.lst_events.tree.get_children(''))
self.events = [{
"t_start": event[0],
"t_end": event[1],
"is_pickup": str2bool(event[2]),
"item_id": int(event[3]),
"item_name": event[4],
"quantity": int(event[5])
} for event in events_info]
if messagebox.askokcancel("Exit?", "Are you sure you're done annotating this experiment's ground truth?\nWe've registered {} event{}".format(len(self.events), '' if len(self.events)==1 else 's')):
self.destroy()
def add_event(self):
prod_id, prod_name = self.selected_product.get()
new_item = (self.t_start, self.t_end, self.is_pickup.get(), prod_id, prod_name, self.quantity.get())
print("Adding event: {}".format(new_item))
self.lst_events.add_item(new_item)
# Reset state
self.quantity.set(1)
self.t_start = None
self.t_end = None
self._update_time()
def remove_event(self, k):
if k.keysym == 'BackSpace' or k.keysym == 'Delete':
selected_items = self.lst_events.tree.selection()
if len(selected_items) > 0 and messagebox.askokcancel("Are you sure?", "Are you sure you want to remove {} item{}?".format(len(selected_items), 's' if len(selected_items)>1 else '')):
self.lst_events.tree.delete(*selected_items)
def _set_time(self, is_t_start):
if is_t_start:
txt_box = self.txt_t_start
text = self.t_start if self.t_start is not None else "Press 'b' to set t_start"
else:
txt_box = self.txt_t_end
text = self.t_end if self.t_end is not None else "Press 'n' to set t_end"
# Update text (need to set state to normal, change text, then disable the widget again)
txt_box.config(state='normal')
txt_box.delete(1.0, 'end')
txt_box.insert('end', text)
txt_box.config(state='disabled')
def _update_time(self):
self._set_time(True)
self._set_time(False)
class GroundTruthLabeler(ExperimentTraverser):
def process_subfolder(self, f):
experiment_folder = os.path.join(self.main_folder, f)
ground_truth_file = os.path.join(experiment_folder, "ground_truth.json")
if os.path.exists(ground_truth_file):
print("Video already annotated!! Skipping (delete '{}' and run this tool again if you want to overwrite)".format(ground_truth_file))
return
# Open ground truth labeling windows
gt_labeler = GroundTruthLabelerWindow(experiment_folder)
gt_labeler.run()
print("Generate_video finished! Weight-camera time offset manually set as {} ({}s wrt weight's own timestamps)".format(gt_labeler.weight_to_cam_t_offset, gt_labeler.t_offset_float))
annotated_events = gt_labeler.events
print("Received annotated events: {}".format(annotated_events))
with open(ground_truth_file, 'w') as f_gt:
json.dump({
'ground_truth': annotated_events,
'weight_to_cam_t_offset': str(gt_labeler.weight_to_cam_t_offset),
'weight_to_cam_t_offset_float': gt_labeler.t_offset_float,
}, f_gt, indent=2)
print("Ground truth annotation saved as '{}'!".format(ground_truth_file))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("folder", default="Dataset/Evaluation", help="Folder containing the experiment to visualize")
parser.add_argument("-s", "--start-datetime", default="", help="Only annotate experiments collected later than this datetime (format: {}; empty for no limit)".format(EXPERIMENT_DATETIME_STR_FORMAT))
parser.add_argument("-e", "--end-datetime", default="", help="Only annotate experiments collected before this datetime (format: {}; empty for no limit)".format(EXPERIMENT_DATETIME_STR_FORMAT))
args = parser.parse_args()
t_start = datetime.strptime(args.start_datetime, EXPERIMENT_DATETIME_STR_FORMAT) if len(args.start_datetime) > 0 else datetime.min
t_end = datetime.strptime(args.end_datetime, EXPERIMENT_DATETIME_STR_FORMAT) if len(args.end_datetime) > 0 else datetime.max
GroundTruthLabeler(args.folder, t_start, t_end).run()