-
Notifications
You must be signed in to change notification settings - Fork 47
/
msgpass.jl
250 lines (199 loc) · 7.47 KB
/
msgpass.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
"""
propagate(fmsg, g, aggr; [xi, xj, e])
propagate(fmsg, g, aggr xi, xj, e=nothing)
Performs message passing on graph `g`. Takes care of materializing the node features on each edge,
applying the message function `fmsg`, and returning an aggregated message ``\\bar{\\mathbf{m}}``
(depending on the return value of `fmsg`, an array or a named tuple of
arrays with last dimension's size `g.num_nodes`).
It can be decomposed in two steps:
```julia
m = apply_edges(fmsg, g, xi, xj, e)
m̄ = aggregate_neighbors(g, aggr, m)
```
GNN layers typically call `propagate` in their forward pass,
providing as input `f` a closure.
# Arguments
- `g`: A `GNNGraph`.
- `xi`: An array or a named tuple containing arrays whose last dimension's size
is `g.num_nodes`. It will be appropriately materialized on the
target node of each edge (see also [`edge_index`](@ref)).
- `xj`: As `xj`, but to be materialized on edges' sources.
- `e`: An array or a named tuple containing arrays whose last dimension's size is `g.num_edges`.
- `fmsg`: A generic function that will be passed over to [`apply_edges`](@ref).
Has to take as inputs the edge-materialized `xi`, `xj`, and `e`
(arrays or named tuples of arrays whose last dimension' size is the size of
a batch of edges). Its output has to be an array or a named tuple of arrays
with the same batch size. If also `layer` is passed to propagate,
the signature of `fmsg` has to be `fmsg(layer, xi, xj, e)`
instead of `fmsg(xi, xj, e)`.
- `aggr`: Neighborhood aggregation operator. Use `+`, `mean`, `max`, or `min`.
# Examples
```julia
using GraphNeuralNetworks, Flux
struct GNNConv <: GNNLayer
W
b
σ
end
Flux.@functor GNNConv
function GNNConv(ch::Pair{Int,Int}, σ=identity)
in, out = ch
W = Flux.glorot_uniform(out, in)
b = zeros(Float32, out)
GNNConv(W, b, σ)
end
function (l::GNNConv)(g::GNNGraph, x::AbstractMatrix)
message(xi, xj, e) = l.W * xj
m̄ = propagate(message, g, +, xj=x)
return l.σ.(m̄ .+ l.bias)
end
l = GNNConv(10 => 20)
l(g, x)
```
See also [`apply_edges`](@ref) and [`aggregate_neighbors`](@ref).
"""
function propagate end
function propagate(f, g::AbstractGNNGraph, aggr; xi = nothing, xj = nothing, e = nothing)
propagate(f, g, aggr, xi, xj, e)
end
function propagate(f, g::AbstractGNNGraph, aggr, xi, xj, e = nothing)
m = apply_edges(f, g, xi, xj, e)
m̄ = aggregate_neighbors(g, aggr, m)
return m̄
end
## APPLY EDGES
"""
apply_edges(fmsg, g; [xi, xj, e])
apply_edges(fmsg, g, xi, xj, e=nothing)
Returns the message from node `j` to node `i` applying
the message function `fmsg` on the edges in graph `g`.
In the message-passing scheme, the incoming messages
from the neighborhood of `i` will later be aggregated
in order to update the features of node `i` (see [`aggregate_neighbors`](@ref)).
The function `fmsg` operates on batches of edges, therefore
`xi`, `xj`, and `e` are tensors whose last dimension
is the batch size, or can be named tuples of
such tensors.
# Arguments
- `g`: An `AbstractGNNGraph`.
- `xi`: An array or a named tuple containing arrays whose last dimension's size
is `g.num_nodes`. It will be appropriately materialized on the
target node of each edge (see also [`edge_index`](@ref)).
- `xj`: As `xi`, but now to be materialized on each edge's source node.
- `e`: An array or a named tuple containing arrays whose last dimension's size is `g.num_edges`.
- `fmsg`: A function that takes as inputs the edge-materialized `xi`, `xj`, and `e`.
These are arrays (or named tuples of arrays) whose last dimension' size is the size of
a batch of edges. The output of `f` has to be an array (or a named tuple of arrays)
with the same batch size. If also `layer` is passed to propagate,
the signature of `fmsg` has to be `fmsg(layer, xi, xj, e)`
instead of `fmsg(xi, xj, e)`.
See also [`propagate`](@ref) and [`aggregate_neighbors`](@ref).
"""
function apply_edges end
function apply_edges(f, g::AbstractGNNGraph; xi = nothing, xj = nothing, e = nothing)
apply_edges(f, g, xi, xj, e)
end
function apply_edges(f, g::AbstractGNNGraph, xi, xj, e = nothing)
check_num_nodes(g, (xj, xi))
check_num_edges(g, e)
s, t = edge_index(g) # for heterographs, errors if more than one edge type
xi = GNNGraphs._gather(xi, t) # size: (D, num_nodes) -> (D, num_edges)
xj = GNNGraphs._gather(xj, s)
m = f(xi, xj, e)
return m
end
## AGGREGATE NEIGHBORS
@doc raw"""
aggregate_neighbors(g, aggr, m)
Given a graph `g`, edge features `m`, and an aggregation
operator `aggr` (e.g `+, min, max, mean`), returns the new node
features
```math
\mathbf{x}_i = \square_{j \in \mathcal{N}(i)} \mathbf{m}_{j\to i}
```
Neighborhood aggregation is the second step of [`propagate`](@ref),
where it comes after [`apply_edges`](@ref).
"""
function aggregate_neighbors(g::GNNGraph, aggr, m)
check_num_edges(g, m)
s, t = edge_index(g)
return GNNGraphs._scatter(aggr, m, t, g.num_nodes)
end
function aggregate_neighbors(g::GNNHeteroGraph, aggr, m)
check_num_edges(g, m)
s, t = edge_index(g)
dest_node_t = only(g.etypes)[3]
return GNNGraphs._scatter(aggr, m, t, g.num_nodes[dest_node_t])
end
### MESSAGE FUNCTIONS ###
"""
copy_xj(xi, xj, e) = xj
"""
copy_xj(xi, xj, e) = xj
"""
copy_xi(xi, xj, e) = xi
"""
copy_xi(xi, xj, e) = xi
"""
xi_dot_xj(xi, xj, e) = sum(xi .* xj, dims=1)
"""
xi_dot_xj(xi, xj, e) = sum(xi .* xj, dims = 1)
"""
xi_sub_xj(xi, xj, e) = xi .- xj
"""
xi_sub_xj(xi, xj, e) = xi .- xj
"""
xj_sub_xi(xi, xj, e) = xj .- xi
"""
xj_sub_xi(xi, xj, e) = xj .- xi
"""
e_mul_xj(xi, xj, e) = reshape(e, (...)) .* xj
Reshape `e` into broadcast compatible shape with `xj`
(by prepending singleton dimensions) then perform
broadcasted multiplication.
"""
function e_mul_xj(xi, xj::AbstractArray{Tj, Nj},
e::AbstractArray{Te, Ne}) where {Tj, Te, Nj, Ne}
@assert Ne <= Nj
e = reshape(e, ntuple(_ -> 1, Nj - Ne)..., size(e)...)
return e .* xj
end
"""
w_mul_xj(xi, xj, w) = reshape(w, (...)) .* xj
Similar to [`e_mul_xj`](@ref) but specialized on scalar edge features (weights).
"""
w_mul_xj(xi, xj::AbstractArray, w::Nothing) = xj # same as copy_xj if no weights
function w_mul_xj(xi, xj::AbstractArray{Tj, Nj}, w::AbstractVector) where {Tj, Nj}
w = reshape(w, ntuple(_ -> 1, Nj - 1)..., length(w))
return w .* xj
end
###### PROPAGATE SPECIALIZATIONS ####################
## See also the methods defined in the package extensions.
## COPY_XJ
function propagate(::typeof(copy_xj), g::GNNGraph, ::typeof(+), xi, xj::AbstractMatrix, e)
A = adjacency_matrix(g, weighted = false)
return xj * A
end
## E_MUL_XJ
# for weighted convolution
function propagate(::typeof(e_mul_xj), g::GNNGraph, ::typeof(+), xi, xj::AbstractMatrix,
e::AbstractVector)
g = set_edge_weight(g, e)
A = adjacency_matrix(g, weighted = true)
return xj * A
end
## W_MUL_XJ
# for weighted convolution
function propagate(::typeof(w_mul_xj), g::GNNGraph, ::typeof(+), xi, xj::AbstractMatrix,
e::Nothing)
A = adjacency_matrix(g, weighted = true)
return xj * A
end
# function propagate(::typeof(copy_xj), g::GNNGraph, ::typeof(mean), xi, xj::AbstractMatrix, e)
# A = adjacency_matrix(g, weighted=false)
# D = compute_degree(A)
# return xj * A * D
# end
# # Zygote bug. Error with sparse matrix without nograd
# compute_degree(A) = Diagonal(1f0 ./ vec(sum(A; dims=2)))
# Flux.Zygote.@nograd compute_degree