-
Notifications
You must be signed in to change notification settings - Fork 47
/
generate.jl
460 lines (377 loc) · 16.9 KB
/
generate.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
"""
rand_graph(n, m; bidirected=true, seed=-1, edge_weight = nothing, kws...)
Generate a random (Erdós-Renyi) `GNNGraph` with `n` nodes and `m` edges.
If `bidirected=true` the reverse edge of each edge will be present.
If `bidirected=false` instead, `m` unrelated edges are generated.
In any case, the output graph will contain no self-loops or multi-edges.
A vector can be passed as `edge_weight`. Its length has to be equal to `m`
in the directed case, and `m÷2` in the bidirected one.
Use a `seed > 0` for reproducibility.
Additional keyword arguments will be passed to the [`GNNGraph`](@ref) constructor.
# Examples
```jldoctest
julia> g = rand_graph(5, 4, bidirected=false)
GNNGraph:
num_nodes = 5
num_edges = 4
julia> edge_index(g)
([1, 3, 3, 4], [5, 4, 5, 2])
# In the bidirected case, edge data will be duplicated on the reverse edges if needed.
julia> g = rand_graph(5, 4, edata=rand(Float32, 16, 2))
GNNGraph:
num_nodes = 5
num_edges = 4
edata:
e => (16, 4)
# Each edge has a reverse
julia> edge_index(g)
([1, 3, 3, 4], [3, 4, 1, 3])
```
"""
function rand_graph(n::Integer, m::Integer; bidirected = true, seed = -1, edge_weight = nothing, kws...)
if bidirected
@assert iseven(m) "Need even number of edges for bidirected graphs, given m=$m."
end
m2 = bidirected ? m ÷ 2 : m
return GNNGraph(Graphs.erdos_renyi(n, m2; is_directed = !bidirected, seed); edge_weight, kws...)
end
"""
rand_heterograph(n, m; seed=-1, bidirected=false, kws...)
Construct an [`GNNHeteroGraph`](@ref) with number of nodes and edges
specified by `n` and `m` respectively. `n` and `m` can be any iterable of pairs
specifing node/edge types and their numbers.
Use a `seed > 0` for reproducibility.
Setting `bidirected=true` will generate a bidirected graph, i.e. each edge will have a reverse edge.
Therefore, for each edge type `(:A, :rel, :B)` a corresponding reverse edge type `(:B, :rel, :A)`
will be generated.
Additional keyword arguments will be passed to the [`GNNHeteroGraph`](@ref) constructor.
# Examples
```jldoctest
julia> g = rand_heterograph((:user => 10, :movie => 20),
(:user, :rate, :movie) => 30)
GNNHeteroGraph:
num_nodes: (:user => 10, :movie => 20)
num_edges: ((:user, :rate, :movie) => 30,)
```
"""
function rand_heterograph end
# for generic iterators of pairs
rand_heterograph(n, m; kws...) = rand_heterograph(Dict(n), Dict(m); kws...)
function rand_heterograph(n::NDict, m::EDict; bidirected = false, seed = -1, kws...)
rng = seed > 0 ? MersenneTwister(seed) : Random.GLOBAL_RNG
if bidirected
return _rand_bidirected_heterograph(rng, n, m; kws...)
end
graphs = Dict(k => _rand_edges(rng, (n[k[1]], n[k[3]]), m[k]) for k in keys(m))
return GNNHeteroGraph(graphs; num_nodes = n, kws...)
end
function _rand_bidirected_heterograph(rng, n::NDict, m::EDict; kws...)
for k in keys(m)
if reverse(k) ∈ keys(m)
@assert m[k] == m[reverse(k)] "Number of edges must be the same in reverse edge types for bidirected graphs."
else
m[reverse(k)] = m[k]
end
end
graphs = Dict{EType, Tuple{Vector{Int}, Vector{Int}, Nothing}}()
for k in keys(m)
reverse(k) ∈ keys(graphs) && continue
s, t, val = _rand_edges(rng, (n[k[1]], n[k[3]]), m[k])
graphs[k] = s, t, val
graphs[reverse(k)] = t, s, val
end
return GNNHeteroGraph(graphs; num_nodes = n, kws...)
end
function _rand_edges(rng, (n1, n2), m)
idx = StatsBase.sample(rng, 1:(n1 * n2), m, replace = false)
s, t = edge_decoding(idx, n1, n2)
val = nothing
return s, t, val
end
"""
rand_bipartite_heterograph(n1, n2, m; [bidirected, seed, node_t, edge_t, kws...])
rand_bipartite_heterograph((n1, n2), m; ...)
rand_bipartite_heterograph((n1, n2), (m1, m2); ...)
Construct an [`GNNHeteroGraph`](@ref) with number of nodes and edges
specified by `n1`, `n2` and `m1` and `m2` respectively.
See [`rand_heterograph`](@ref) for a more general version.
# Keyword arguments
- `bidirected`: whether to generate a bidirected graph. Default is `true`.
- `seed`: random seed. Default is `-1` (no seed).
- `node_t`: node types. If `bipartite=true`, this should be a tuple of two node types, otherwise it should be a single node type.
- `edge_t`: edge types. If `bipartite=true`, this should be a tuple of two edge types, otherwise it should be a single edge type.
"""
function rand_bipartite_heterograph end
rand_bipartite_heterograph(n1::Int, n2::Int, m::Int; kws...) = rand_bipartite_heterograph((n1, n2), (m, m); kws...)
rand_bipartite_heterograph((n1, n2)::NTuple{2,Int}, m::Int; kws...) = rand_bipartite_heterograph((n1, n2), (m, m); kws...)
function rand_bipartite_heterograph((n1, n2)::NTuple{2,Int}, (m1, m2)::NTuple{2,Int}; bidirected=true,
node_t = (:A, :B), edge_t = :to, kws...)
if edge_t isa Symbol
edge_t = (edge_t, edge_t)
end
return rand_heterograph(Dict(node_t[1] => n1, node_t[2] => n2),
Dict((node_t[1], edge_t[1], node_t[2]) => m1, (node_t[2], edge_t[2], node_t[1]) => m2);
bidirected, kws...)
end
"""
knn_graph(points::AbstractMatrix,
k::Int;
graph_indicator = nothing,
self_loops = false,
dir = :in,
kws...)
Create a `k`-nearest neighbor graph where each node is linked
to its `k` closest `points`.
# Arguments
- `points`: A num_features × num_nodes matrix storing the Euclidean positions of the nodes.
- `k`: The number of neighbors considered in the kNN algorithm.
- `graph_indicator`: Either nothing or a vector containing the graph assignment of each node,
in which case the returned graph will be a batch of graphs.
- `self_loops`: If `true`, consider the node itself among its `k` nearest neighbors, in which
case the graph will contain self-loops.
- `dir`: The direction of the edges. If `dir=:in` edges go from the `k`
neighbors to the central node. If `dir=:out` we have the opposite
direction.
- `kws`: Further keyword arguments will be passed to the [`GNNGraph`](@ref) constructor.
# Examples
```jldoctest
julia> n, k = 10, 3;
julia> x = rand(Float32, 3, n);
julia> g = knn_graph(x, k)
GNNGraph:
num_nodes = 10
num_edges = 30
julia> graph_indicator = [1,1,1,1,1,2,2,2,2,2];
julia> g = knn_graph(x, k; graph_indicator)
GNNGraph:
num_nodes = 10
num_edges = 30
num_graphs = 2
```
"""
function knn_graph(points::AbstractMatrix, k::Int;
graph_indicator = nothing,
self_loops = false,
dir = :in,
kws...)
if graph_indicator !== nothing
d, n = size(points)
@assert graph_indicator isa AbstractVector{<:Integer}
@assert length(graph_indicator) == n
# All graphs in the batch must have at least k nodes.
cm = StatsBase.countmap(graph_indicator)
@assert all(values(cm) .>= k)
# Make sure that the distance between points in different graphs
# is always larger than any distance within the same graph.
points = points .- minimum(points)
points = points ./ maximum(points)
dummy_feature = 2d .* reshape(graph_indicator, 1, n)
points = vcat(points, dummy_feature)
end
kdtree = NearestNeighbors.KDTree(points)
if !self_loops
k += 1
end
sortres = false
idxs, dists = NearestNeighbors.knn(kdtree, points, k, sortres)
g = GNNGraph(idxs; dir, graph_indicator, kws...)
if !self_loops
g = remove_self_loops(g)
end
return g
end
"""
radius_graph(points::AbstractMatrix,
r::AbstractFloat;
graph_indicator = nothing,
self_loops = false,
dir = :in,
kws...)
Create a graph where each node is linked
to its neighbors within a given distance `r`.
# Arguments
- `points`: A num_features × num_nodes matrix storing the Euclidean positions of the nodes.
- `r`: The radius.
- `graph_indicator`: Either nothing or a vector containing the graph assignment of each node,
in which case the returned graph will be a batch of graphs.
- `self_loops`: If `true`, consider the node itself among its neighbors, in which
case the graph will contain self-loops.
- `dir`: The direction of the edges. If `dir=:in` edges go from the
neighbors to the central node. If `dir=:out` we have the opposite
direction.
- `kws`: Further keyword arguments will be passed to the [`GNNGraph`](@ref) constructor.
# Examples
```jldoctest
julia> n, r = 10, 0.75;
julia> x = rand(Float32, 3, n);
julia> g = radius_graph(x, r)
GNNGraph:
num_nodes = 10
num_edges = 46
julia> graph_indicator = [1,1,1,1,1,2,2,2,2,2];
julia> g = radius_graph(x, r; graph_indicator)
GNNGraph:
num_nodes = 10
num_edges = 20
num_graphs = 2
```
# References
Section B paragraphs 1 and 2 of the paper [Dynamic Hidden-Variable Network Models](https://arxiv.org/pdf/2101.00414.pdf)
"""
function radius_graph(points::AbstractMatrix, r::AbstractFloat;
graph_indicator = nothing,
self_loops = false,
dir = :in,
kws...)
if graph_indicator !== nothing
d, n = size(points)
@assert graph_indicator isa AbstractVector{<:Integer}
@assert length(graph_indicator) == n
# Make sure that the distance between points in different graphs
# is always larger than r.
dummy_feature = 2r .* reshape(graph_indicator, 1, n)
points = vcat(points, dummy_feature)
end
balltree = NearestNeighbors.BallTree(points)
sortres = false
idxs = NearestNeighbors.inrange(balltree, points, r, sortres)
g = GNNGraph(idxs; dir, graph_indicator, kws...)
if !self_loops
g = remove_self_loops(g)
end
return g
end
"""
rand_temporal_radius_graph(number_nodes::Int,
number_snapshots::Int,
speed::AbstractFloat,
r::AbstractFloat;
self_loops = false,
dir = :in,
kws...)
Create a random temporal graph given `number_nodes` nodes and `number_snapshots` snapshots.
First, the positions of the nodes are randomly generated in the unit square. Two nodes are connected if their distance is less than a given radius `r`.
Each following snapshot is obtained by applying the same construction to new positions obtained as follows.
For each snapshot, the new positions of the points are determined by applying random independent displacement vectors to the previous positions. The direction of the displacement is chosen uniformly at random and its length is chosen uniformly in `[0, speed]`. Then the connections are recomputed.
If a point happens to move outside the boundary, its position is updated as if it had bounced off the boundary.
# Arguments
- `number_nodes`: The number of nodes of each snapshot.
- `number_snapshots`: The number of snapshots.
- `speed`: The speed to update the nodes.
- `r`: The radius of connection.
- `self_loops`: If `true`, consider the node itself among its neighbors, in which
case the graph will contain self-loops.
- `dir`: The direction of the edges. If `dir=:in` edges go from the
neighbors to the central node. If `dir=:out` we have the opposite
direction.
- `kws`: Further keyword arguments will be passed to the [`GNNGraph`](@ref) constructor of each snapshot.
# Example
```jldoctest
julia> n, snaps, s, r = 10, 5, 0.1, 1.5;
julia> tg = rand_temporal_radius_graph(n,snaps,s,r) # complete graph at each snapshot
TemporalSnapshotsGNNGraph:
num_nodes: [10, 10, 10, 10, 10]
num_edges: [90, 90, 90, 90, 90]
num_snapshots: 5
```
"""
function rand_temporal_radius_graph(number_nodes::Int,
number_snapshots::Int,
speed::AbstractFloat,
r::AbstractFloat;
self_loops = false,
dir = :in,
kws...)
points=rand(2, number_nodes)
tg = Vector{GNNGraph}(undef, number_snapshots)
for t in 1:number_snapshots
tg[t] = radius_graph(points, r; graph_indicator = nothing, self_loops, dir, kws...)
for i in 1:number_nodes
ρ = 2 * speed * rand() - speed
theta=2*pi*rand()
points[1,i]=1-abs(1-(abs(points[1,i]+ρ*cos(theta))))
points[2,i]=1-abs(1-(abs(points[2,i]+ρ*sin(theta))))
end
end
return TemporalSnapshotsGNNGraph(tg)
end
function _hyperbolic_distance(nodeA::Array{Float64, 1},nodeB::Array{Float64, 1}; ζ::Real)
if nodeA != nodeB
a = cosh(ζ * nodeA[1]) * cosh(ζ * nodeB[1])
b = sinh(ζ * nodeA[1]) * sinh(ζ * nodeB[1])
c = cos(pi - abs(pi - abs(nodeA[2] - nodeB[2])))
d = acosh(a - (b * c)) / ζ
else
d = 0.0
end
return d
end
"""
rand_temporal_hyperbolic_graph(number_nodes::Int,
number_snapshots::Int;
α::Real,
R::Real,
speed::Real,
ζ::Real=1,
self_loop = false,
kws...)
Create a random temporal graph given `number_nodes` nodes and `number_snapshots` snapshots.
First, the positions of the nodes are generated with a quasi-uniform distribution (depending on the parameter `α`) in hyperbolic space within a disk of radius `R`. Two nodes are connected if their hyperbolic distance is less than `R`. Each following snapshot is created in order to keep the same initial distribution.
# Arguments
- `number_nodes`: The number of nodes of each snapshot.
- `number_snapshots`: The number of snapshots.
- `α`: The parameter that controls the position of the points. If `α=ζ`, the points are uniformly distributed on the disk of radius `R`. If `α>ζ`, the points are more concentrated in the center of the disk. If `α<ζ`, the points are more concentrated at the boundary of the disk.
- `R`: The radius of the disk and of connection.
- `speed`: The speed to update the nodes.
- `ζ`: The parameter that controls the curvature of the disk.
- `self_loops`: If `true`, consider the node itself among its neighbors, in which
case the graph will contain self-loops.
- `kws`: Further keyword arguments will be passed to the [`GNNGraph`](@ref) constructor of each snapshot.
# Example
```jldoctest
julia> n, snaps, α, R, speed, ζ = 10, 5, 1.0, 4.0, 0.1, 1.0;
julia> thg = rand_temporal_hyperbolic_graph(n, snaps; α, R, speed, ζ)
TemporalSnapshotsGNNGraph:
num_nodes: [10, 10, 10, 10, 10]
num_edges: [44, 46, 48, 42, 38]
num_snapshots: 5
```
# References
Section D of the paper [Dynamic Hidden-Variable Network Models](https://arxiv.org/pdf/2101.00414.pdf) and the paper
[Hyperbolic Geometry of Complex Networks](https://arxiv.org/pdf/1006.5169.pdf)
"""
function rand_temporal_hyperbolic_graph(number_nodes::Int,
number_snapshots::Int;
α::Real,
R::Real,
speed::Real,
ζ::Real=1,
self_loop = false,
kws...)
@assert number_snapshots > 1 "The number of snapshots must be greater than 1"
@assert α > 0 "α must be greater than 0"
probabilities = rand(number_nodes)
points = Array{Float64}(undef,2,number_nodes)
points[1,:].= (1/α) * acosh.(1 .+ (cosh(α * R) - 1) * probabilities)
points[2,:].= 2 * pi * rand(number_nodes)
tg = Vector{GNNGraph}(undef, number_snapshots)
for time in 1:number_snapshots
adj = zeros(number_nodes,number_nodes)
for i in 1:number_nodes
for j in 1:number_nodes
if !self_loop && i==j
continue
elseif _hyperbolic_distance(points[:,i],points[:,j]; ζ) <= R
adj[i,j] = adj[j,i] = 1
end
end
end
tg[time] = GNNGraph(adj)
probabilities .= probabilities .+ (2 * speed * rand(number_nodes) .- speed)
probabilities[probabilities.>1] .= 1 .- (probabilities[probabilities .> 1] .% 1)
probabilities[probabilities.<0] .= abs.(probabilities[probabilities .< 0])
points[1,:].= (1/α) * acosh.(1 .+ (cosh(α * R) - 1) * probabilities)
points[2,:].= points[2,:] .+ (2 * speed * rand(number_nodes) .- speed)
end
return TemporalSnapshotsGNNGraph(tg)
end