-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
153 lines (129 loc) · 5.03 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import torch
import torch.nn as nn
import torch.nn.functional as F
def conv_wo_act(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
return nn.Sequential(
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation, bias=False),
nn.BatchNorm2d(out_planes),
)
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
return nn.Sequential(
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation, bias=False),
nn.BatchNorm2d(out_planes),
nn.PReLU(out_planes)
)
def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
return nn.Sequential(
torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes,
kernel_size=4, stride=2, padding=1, bias=True),
nn.PReLU(out_planes)
)
class ResBlock(nn.Module):
def __init__(self, in_planes, out_planes, stride=1):
super(ResBlock, self).__init__()
if in_planes == out_planes and stride == 1:
self.conv0 = nn.Identity()
else:
self.conv0 = nn.Conv2d(in_planes, out_planes,
3, stride, 1, bias=False)
self.conv1 = conv(in_planes, out_planes, 3, stride, 1)
self.conv2 = conv_wo_act(out_planes, out_planes, 3, 1, 1)
self.relu1 = nn.PReLU(1)
self.relu2 = nn.PReLU(out_planes)
self.fc1 = nn.Conv2d(out_planes, 16, kernel_size=1, bias=False)
self.fc2 = nn.Conv2d(16, out_planes, kernel_size=1, bias=False)
def forward(self, x):
y = self.conv0(x)
x = self.conv1(x)
x = self.conv2(x)
w = x.mean(3, True).mean(2, True)
w = self.relu1(self.fc1(w))
w = torch.sigmoid(self.fc2(w))
x = self.relu2(x * w + y)
return x
class FFBlock(nn.Module):
def __init__(self, in_channel, out_channel, stride):
super(FFBlock, self).__init__()
self.res0 = ResBlock(in_channel, out_channel, stride)
self.res1 = ResBlock(out_channel, out_channel)
self.res2 = ResBlock(out_channel, out_channel)
self.res3 = ResBlock(out_channel, out_channel)
def forward(self, x):
x = self.res0(x)
x = self.res1(x)
x = self.res2(x)
x = self.res3(x)
return x
class FFNet(nn.Module): # as backbone
def __init__(self):
super(FFNet, self).__init__()
self.conv0 = conv(6, 64, 3, 2, 1)
self.block0 = FFBlock(64, 64, 2)
self.block1 = FFBlock(64, 96, 1)
self.block2 = FFBlock(96, 128, 1)
self.conv1 = conv_wo_act(128, 128, 3, 1, 1)
self.conv2 = nn.Conv2d(128, 1 + 128, 3, 1, 1)
def forward(self, x):
x = self.conv0(x)
x = self.block0(x)
x = self.block1(x)
x = self.block2(x)
feature = self.conv1(x)
out = self.conv2(x)
mask = torch.sigmoid(out[:, 0:1])
residual = torch.sigmoid(out[:, 1:]) * 2 - 1
return feature, mask, residual
class DNet(nn.Module):
def __init__(self, num_class):
super(DNet, self).__init__()
self.down0 = ResBlock(128, 256, 2)
self.down1 = ResBlock(256, 512, 2)
self.down2 = ResBlock(512, 1024, 2)
self.up0 = deconv(1024, 512)
self.up1 = deconv(512, 256)
self.up2 = deconv(256, 128)
self.heads = {'hm': num_class, 'wh': 2, 'reg': 2}
for head in sorted(self.heads):
num_output = self.heads[head]
fc = nn.Conv2d(128, num_output, 3, 1, 1)
self.__setattr__(head, fc)
def forward(self, x):
ret = {}
for head in self.heads:
ret[head] = self.__getattr__(head)(x)
return ret
class CNet(nn.Module):
def __init__(self, num_class=1):
super(CNet, self).__init__()
self.conv0 = conv(128, 256, 3, 2, 1)
self.conv1 = conv(256, 512, 3, 2, 1)
self.conv2 = conv(512, 1024, 3, 2, 1)
self.fc = nn.Linear(1024, num_class)
def forward(self, x):
x = self.conv0(x)
x = self.conv1(x)
x = self.conv2(x)
x = F.adaptive_avg_pool2d(x, [1, 1])
x = x.view(-1, 1024)
x = self.fc(x)
return x
class Model(nn.Module):
def __init__(self, num_class=1):
super(Model, self).__init__()
self.backbone = FFNet()
# self.cnet = CNet(num_class + 1)
self.head = DNet(num_class)
def forward(self, x):
feature, mask, residual = self.backbone(x)
# out = feature * mask + residual
out = self.head(feature)
# out = self.cnet(out)
return out, mask
if __name__ == '__main__':
model = Model(num_class=1)
dummy_input = torch.randn(1, 6, 512, 512)
out = model(dummy_input, is_train=False)
for i in out:
print(out[i].shape)