
programming with R

adrian alexa
aalexa@illumina.com

CambR, March 25th 2013

this talk is about

a list of useful R tricks (hopefully)

a collection of problems I had to solve

code optimization and profiling

CambR, March 25th 2013

not in this talk

an introduction to R (not for complete beginners)

a set of rules one needs to follow

object oriented programming

graphics, statistics, modeling, or other cool
stuff one usually does with R!

CambR, March 25th 2013

programming with R
vs.

working with R

Patrick Burns made a point that the writing R
functions requires a different style than working

interactively with R.

myMat[, 1]
myMat[, 1, drop = FALSE]

 i never use apply() or sapply() in my code.
plenty of lapply and for/while/repeat loops.

CambR, March 25th 2013

problems of R ?

R is an interpreted language – thus show !!!

R doesn’t directly operate with the underlying
data types. it works on abstract representations of

those (think at them as structures in C).

there is a wide spread believe that R code is very
slow, around 100 times slower than native C code.

CambR, March 25th 2013

quick tips

try to use as many primitive functions as possible.

use matrices or lists whenever is possible. matrix
computation in R can be faster even than naiive C code.

avoid doing computations directly on large data.frames.
they are a lot slower compared to matrix computations.

pre-allocate the space for the entire array/matrix when

creating the object and use column assignments
whenever possible.

CambR, March 25th 2013

quick tips

m <- do.call(cbind, l)
for(i in 1:length(l))
 m <- cbind(m, l[[i]])

vs.

identical(x, y) for checking the equality
of two R objects

x[which(x > 0)] x[x > 0] vs.

unlist(l, use.names = FALSE) one seldom use the list names
and the speedup is tremendous

sometimes using which() will be faster! why? but be aware of x[-which(expr)]

CambR, March 25th 2013

code profiling

when the code works correctly, the next step is to find out
which parts are too slow, and try to speed them up.

this requires measurement, rather than guessing and R

provides the basic tools for performance analysis.

the R profiler won't tell you the complete story!
(native function can allocate system memory which is not traceable by R)

CambR, March 25th 2013

code profiling

there are two extra packages: profr and proftools. they
offer functions for plotting the results

system.time() system time measurements

Rprof() starts/stop the R profiler

summaryRprof() display profiling data

Rprofmem() function for profiling R memory usage
(needs build in support)

CambR, March 25th 2013

code profiling

> Rprof(“myRprofile.out”, memory.profiling = TRUE)
your code here
> Rprof(NULL)

> summaryRprof(myRprofile.out)
Time and memory stats of your code

let’s use the profiler to check what is the difference
between for loops and functional iterators like

lapply(), apply(), by()...

CambR, March 25th 2013

code profiling

> nr <- nc <- 1e4L

> Rprof(interval = 0.001, memory.profiling = TRUE)

> set.seed(1234)
> mat <- matrix(0L, nrow = nr, ncol = nc)
> for(i in seq_len(nr))
 mat[i,] <- sample(nc)

> Rprof(NULL)
> summaryRprof(memory = "both")

CambR, March 25th 2013

code profiling

$by.self
 self.time self.pct total.time total.pct mem.total
"sample" 0.513 76.34 0.513 76.34 40.8
"matrix" 0.159 23.66 0.159 23.66 47.7

$by.total
 total.time total.pct mem.total self.time self.pct
"sample" 0.513 76.34 40.8 0.513 76.34
"matrix" 0.159 23.66 47.7 0.159 23.66

$sample.interval
[1] 0.001

$sampling.time
[1] 0.672

CambR, March 25th 2013

code profiling
> mean(replicate(10, system.time({set.seed(1234)
 mat <- matrix(0L, nrow = nr, ncol = nc)
 for(i in seq_len(nr))
 mat[i,] <- sample(nc)
 })["elapsed"]))
[1] 7.8444

system.time()gives the real time for the evaluation of the expression.

> mean(replicate(10, system.time({set.seed(1234)
 mat <- matrix(0L, nrow = nr, ncol = nc)
 for(i in seq_len(nc))
 mat[, i] <- sample(nr)
 })["elapsed"]))
[1] 3.4799

CambR, March 25th 2013

code profiling

> mean(replicate(10, system.time({set.seed(1234)
 matA <- matrix(nr, nrow = 1L, ncol = nc)
 matA <- apply(matA, 2, sample)
 })["elapsed"]))
[1] 2.7831

apply() version of the problem

$by.self
 self.time self.pct total.time total.pct mem.total
"FUN" 0.452 63.75 0.452 63.75 157.4
"array" 0.147 20.73 0.147 20.73 47.7
"unlist" 0.084 11.85 0.087 12.27 50.1
"apply" 0.024 3.39 0.709 100.00 262.3
"lapply" 0.002 0.28 0.003 0.42 2.3

CambR, March 25th 2013

code profiling

> mean(replicate(10, system.time({set.seed(1234)
 mat <- do.call(cbind, lapply(rep.int(nr, nc),
sample)) })["elapsed"]))
[1] 2.2558

CambR, March 25th 2013

unlisting

assume we need to compute a statistic over all
elements of a list

for example, to count how many distinct elements
are in the list

“given a list structure x, unlist()simplifies
it to produce a vector which contains all the
atomic components which occur in x.”

CambR, March 25th 2013

unlisting
> length(id2GO)
[1] 18490

> str(id2GO[1:5])
List of 5
 $ ENSG00000124209: chr [1:18] "GO:0007032" "GO:0006897"…
 $ ENSG00000064703: chr [1:22] "GO:0000244" "GO:0008026"…
 $ ENSG00000171408: chr [1:6] "GO:0016787" "GO:0004114"…
 $ ENSG00000187223: chr "GO:0031424"
 $ ENSG00000213523: chr [1:21] "GO:0005737" "GO:0006915"…

> str(unlist(id2GO))
 Named chr [1:156036] "GO:0007032" "GO:0006897"…
 - attr(*,"names")= chr [1:156036] "ENSG000001242091" …

> length(unique(unlist(id2GO)))
[1] 7413

CambR, March 25th 2013

unlisting
> Rprof(interval = 0.01, memory.profiling = TRUE)
> for(i in 1:1000)
 invisible(unlist(id2GO))
> Rprof(NULL)
> summaryRprof(memory = "both")$by.total
 total.time total.pct mem.total self.time self.pct
"unlist" 114.39 100 147.3 114.39 100

unlist() tries to keep the naming information present in x, and the
resulted names are mangled by default –> poor performance.

> Rprof(interval = 0.01, memory.profiling = TRUE)
> for(i in 1:1000)
 invisible(unlist(id2GO, use.names = FALSE))
> Rprof(NULL)
> summaryRprof(memory = "both")$by.total
 total.time total.pct mem.total self.time self.pct
"unlist" 5.91 100 73.3 5.91 100

CambR, March 25th 2013

inverting mappings

an interesting problem is to
inverse a list of mappings

given a mapping form genes to GO terms as a
list, compute which are the genes mapped to

each GO

CambR, March 25th 2013

inverting mappings

inverseList <- function(l) {
 ##num.rId <- sapply(l, length)
 num.rId <- unlist(lapply(l, length), use.names = FALSE)

 rId <- unlist(l, use.names = FALSE)
 lId <- rep.int(names(l), num.rId)

 return(split(lId, rId))
}

> str(inverseList(id2GO)[1:3])
List of 3
 $ GO:0000002: chr [1:3] "ENSG00000025708" "ENSG00000151729" …
 $ GO:0000003: chr "ENSG00000189409"
 $ GO:0000009: chr "ENSG00000182858"

CambR, March 25th 2013

indexing

indexing is very fast in R, but it is quite a generic
operation and not all cases are optimized!

x[10:1000]

what happens when the following code gets
evaluated?

CambR, March 25th 2013

indexing using IRanges

window() method from IRanges (bioconductor
pakage) provides some cool functionality.

window(x, start = 10L, end = 1000L)

why is this better?

there is some penalty for being a method though!

CambR, March 25th 2013

indexing using IRanges

> x <- seq_len(1e8)
> st <- 10L
> en <- length(x) - 10L

> system.time(x1 <- x[st:en])
 user system elapsed
 0.964 0.400 1.363

> system.time(x2 <- window(x, start = st, end = en))
 user system elapsed
 0.232 0.128 0.360

> identical(x1, x2)
[1] TRUE

CambR, March 25th 2013

some other tips

one can use as.vector(IRanges()) to generate vector
indices - quite fast for matrix indexing mat[st:en,].

use tabulate() instead of table() when you just want

the counts. Rle() can also be used if the data is ordered!

a combination of scan() and readBin()/ readChar()
can give you very fast IO, much faster than

read.table().

CambR, March 25th 2013

high performance computing

mmap package is really nice if you work with
large external arrays – lets you build a custom

columnar database

rmongodb lets you leverage the power of
mongoDB system

scidb leverages the power of SciDB array-

oriented database. keep an eye on this!

CambR, March 25th 2013

things to take home

speedup is possible in R using a few tricks.
sometimes are easy to implement, sometimes

they are not.

start with simple approaches familiar to you.
once the code is functional you can start the

optimization.

the choice of data structure is critical to the
performance. use vectorization whenever its

possible.

CambR, March 25th 2013

things to take home

do not grow objects and avoid recopying
large objects.

transform the data to a user friendly object at

the end of the function, see data.frames

for loops are not slow, but the operations
performed inside are. have a compromise

between for loops and *apply().

