-
Notifications
You must be signed in to change notification settings - Fork 4
/
cvmix_ddiff.tex
executable file
·113 lines (99 loc) · 3.79 KB
/
cvmix_ddiff.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
\chapter{\scshape Double diffusion}
\label{chapter:cvmix_ddiffusion}
\minitoc
\vspace{.5cm}
\begin{mdframed}[backgroundcolor=lightgray!50]
This chapter details the parameterization of mixing from double
diffusive processes. The following CVMix Fortran module is directly
connected to the material in this chapter:
\begin{align*}
&{\tt cvmix\_ddiff.F90}
\end{align*}
\end{mdframed}
\section{Introduction to mixing from double diffusive processes}
Double diffusion processes \citep{Schmitt1994} have the potential to
significantly enhance vertical diffusivities. The key stratification
parameter of use for double diffusive processes is
\begin{equation}
R_{\rho} = \frac{\alpha}{\beta} \left( \frac{\partial\Theta/\partial
z}{\partial S / \partial z} \right),
\label{eq:stratification-parameter-ddiffuse}
\end{equation}
where the thermal expansion coefficient is given by
\begin{equation}
\alpha = -\frac{1}{\rho} \, \left( \frac{\partial \rho}{\partial \Theta} \right),
\end{equation}
and the haline contraction coefficient is
\begin{equation}
\beta = \frac{1}{\rho} \, \left( \frac{\partial \rho}{\partial S} \right).
\end{equation}
Note that the effects from double diffusive processes on viscosity are
ignored in CVMix for two reasons:
\begin{itemize}
\item The effects on viscosity are not well known.
\item For most applications, the vertical Prandtl number is larger
than unity (often 10) for background viscosities (Chapter
\ref{chapter:cvmix_background}), so that modifying the vertical
viscosity according to double diffusion will not represent a
sizable relative impact.
\end{itemize}
There are two regimes of double diffusive processes, with the
parameterization different in the regimes. We now detail how CVMix
parameterizes vertical mixing in these two regimes.
\section{Salt fingering regime}
\label{section:salt-fingering-param}
The salt fingering regime occurs when salinity is destabilizing the
water column (salty above fresh water) and when the stratification
parameter $ R_{\rho}$ is within a particular range:
\begin{align}
&\frac{\partial S}{\partial z} > 0
\\
&1 < R_{\rho} < R_{\rho}^0 = 2.55.
\end{align}
The parameterized vertical diffusivity in this regime is fit to
observational estimates given by \cite{StLaurentSchmitt1999}, who
propose the following form
\begin{equation}
\kappa_d = \kappa_d^0 \left[1-\frac{{R_{\rho}-1}}{{R_{\rho}^0 -1}}\right]^3.
\label{eq:kappadsf}
\end{equation}
The default values for the parameter $\kappa_d^0$ are set to
\begin{equation}
\kappa_d^0 = \left\{ \begin{array}{lll}
&1 \times 10^{-4}~\mbox{m}^{2}~\mbox{s}^{-1} &\mbox{for salinity and other tracers}
\\
&0.7 \times 10^{-4}~\mbox{m}^{2}~\mbox{s}^{-1} &\mbox{for temperature.}
\end{array}
\right.
\end{equation}
\section{Diffusive convective regime}
\label{section:diffusive-convective-param}
Diffusive convective instability occurs where the temperature is
destabilizing (cold above warm) and with $0 < R_{\rho} < 1$
\begin{align}
&\frac{\partial \Theta}{\partial z} < 0
\\
&0 < R_{\rho} < 1.
\end{align}
For temperature, the vertical diffusivity used in \cite{LargeKPP} is
given by
\begin{eqnarray}
\kappa_d = \nu_{\mbox{\tiny molecular}} \times 0.909
\exp\left(4.6\exp\left[-.54\left(R_{\rho}^{-1} - 1\right)\right]\right),
\label{eq:kappaddd}
\end{eqnarray}
where
\begin{equation}
\nu_{\mbox{\tiny molecular}} = 1.5 \, \times \, 10^{-6}~\mbox{m}^{2}~\mbox{s}^{-1}
\end{equation}
is the molecular viscosity of water. Multiplying the diffusivity
(\ref{eq:kappaddd}) by the factor
\begin{equation}
\mathrm{factor} =
\begin{cases}
\left(1.85 - 0.85R_{\rho}^{-1}\right) R_{\rho} & 0.5\leq R_{\rho}<1 \\
0.15 R_{\rho} & R_{\rho} < 0.5,
\end{cases}
\label{schmitdd}
\end{equation}
gives the diffusivity for salinity and other tracers.