-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprompt.py
393 lines (323 loc) · 17 KB
/
prompt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
import torch
import torch.nn as nn
from collections import OrderedDict
import torch.nn.functional as F
import copy
def get_out_batch(batch_size, task_mean, task_std):
out = []
for i in range(batch_size):
out.append(task_mean + task_std * torch.randn_like(task_mean))
return torch.stack(out).to(task_mean.device)
class EPrompt(nn.Module):
def __init__(self, length=5, embed_dim=768, num_tasks=10, kernel_size=17, embedding_key='mean', prompt_init='uniform', prompt_pool=False,
prompt_key=False, pool_size=None, top_k=None, batchwise_prompt=False, prompt_key_init='uniform',
num_layers=1, use_prefix_tune_for_e_prompt=False, num_heads=-1, same_key_value=False,
prompts_per_task=5):
super().__init__()
self.length = length
self.prompt_pool = prompt_pool
self.embedding_key = embedding_key
self.prompt_init = prompt_init
self.prompt_key = prompt_key
self.top_k = top_k
self.n_tasks = num_tasks
self.batchwise_prompt = batchwise_prompt
self.num_layers = num_layers
self.use_prefix_tune_for_e_prompt = use_prefix_tune_for_e_prompt
self.num_heads = num_heads
self.same_key_value = same_key_value
self.use_prompt_embed_matcher = True
self.prompts_per_task = prompts_per_task
self.old_num_k = 0
self.new_num_k = 0
self.sigmoid = nn.Sigmoid()
self.ker_size = kernel_size
self.stride = 1
self.dilation = 1
self.conv_channels = 1
# This is the max number of kernels (self.pool_size) that can occur if we use max number of prompts per task
self.pool_size = self.n_tasks * prompts_per_task
print("Num Tasks: ", self.n_tasks, "pool_size: ", self.pool_size, "kernel_size: ", kernel_size, "top_k: ", top_k)
if self.use_prompt_embed_matcher:
self.prompt_embed_matcher = nn.Sequential(OrderedDict([
('linear1', nn.Linear(embed_dim, embed_dim // 2)),
('relu1', nn.ReLU()),
('linear2', nn.Linear(embed_dim // 2, embed_dim // 4))
]))
self.k_conv_vals = nn.ModuleDict()
for i in range(self.num_layers):
self.k_conv_vals[str(i)] = nn.ModuleDict()
for j in range(self.num_heads):
self.k_conv_vals[str(i)][str(j)] = nn.ModuleList()
for k in range(self.pool_size):
conv_val = nn.Conv2d(1, 1, (self.ker_size, self.ker_size), \
stride=self.stride, dilation=self.dilation)
# conv_val.weight.data = torch.nn.init.normal_(conv_val.weight.data)
self.k_conv_vals[str(i)][str(j)].append(conv_val)
self.v_conv_vals = nn.ModuleDict()
for i in range(self.num_layers):
self.v_conv_vals[str(i)] = nn.ModuleDict()
for j in range(self.num_heads):
self.v_conv_vals[str(i)][str(j)] = nn.ModuleList()
for k in range(self.pool_size):
conv_val = nn.Conv2d(1, 1, (self.ker_size, self.ker_size), \
stride=self.stride, dilation=self.dilation)
# conv_val.weight.data = torch.nn.init.normal_(conv_val.weight.data)
self.v_conv_vals[str(i)][str(j)].append(conv_val)
# user prefix style
if self.use_prefix_tune_for_e_prompt:
assert embed_dim % self.num_heads == 0
if self.same_key_value:
prompt_pool_shape = (self.num_layers, self.length + self.ker_size - 1,
embed_dim + (self.ker_size - 1) * self.num_heads)
if prompt_init == 'zero':
self.prompt = nn.Parameter(torch.zeros(prompt_pool_shape))
elif prompt_init == 'uniform':
self.prompt = nn.Parameter(torch.randn(prompt_pool_shape))
nn.init.uniform_(self.prompt, -1, 1)
else:
prompt_pool_shape = (self.num_layers, (self.length + self.ker_size - 1) * 2,
embed_dim + (self.ker_size - 1) * self.num_heads)
if prompt_init == 'zero':
self.prompt = nn.Parameter(torch.zeros(prompt_pool_shape))
elif prompt_init == 'uniform':
self.prompt = nn.Parameter(torch.randn(prompt_pool_shape)) # num_layers, 2, pool_size, length, num_heads, embed_dim // num_heads
nn.init.uniform_(self.prompt, -1, 1)
elif prompt_init == 'ortho':
self.prompt = nn.Parameter(torch.randn(prompt_pool_shape))
for i in range(self.num_layers):
nn.init.orthogonal_(self.prompt[i])
else:
prompt_pool_shape=(self.num_layers, self.length, embed_dim)
if prompt_init == 'zero':
self.prompt = nn.Parameter(torch.zeros(prompt_pool_shape))
elif prompt_init == 'uniform':
self.prompt = nn.Parameter(torch.randn(prompt_pool_shape))
nn.init.uniform_(self.prompt, -1, 1)
elif prompt_init == 'ortho':
self.prompt = nn.Parameter(torch.randn(prompt_pool_shape))
nn.init.orthogonal_(self.prompt)
# if using learnable prompt keys
if prompt_key:
if self.use_prompt_embed_matcher:
key_shape = (self.pool_size, embed_dim // 4)
else:
key_shape = (self.pool_size, embed_dim)
if prompt_key_init == 'zero':
self.prompt_key = nn.Parameter(torch.zeros(key_shape))
elif prompt_key_init == 'uniform':
self.prompt_key = nn.Parameter(torch.randn(key_shape))
nn.init.uniform_(self.prompt_key, -1, 1)
elif prompt_key_init == 'ortho':
self.prompt_key = nn.Parameter(torch.randn(key_shape))
nn.init.orthogonal_(self.prompt_key)
else:
# else use mean of prompt as key
# only compatible with prompt, not prefix
prompt_mean = torch.mean(self.prompt, dim=[0, 2])
self.prompt_key = prompt_mean
def l2_normalize(self, x, dim=None, epsilon=1e-12):
"""Normalizes a given vector or matrix."""
square_sum = torch.sum(x ** 2, dim=dim, keepdim=True)
x_inv_norm = torch.rsqrt(torch.maximum(square_sum, torch.tensor(epsilon, device=x.device)))
return x * x_inv_norm
def process_new_task(self, old_num_k, new_num_k):
self.old_num_k = old_num_k
self.new_num_k = new_num_k
print("Old Num K: ", self.old_num_k, "New Num K: ", self.new_num_k)
self.prompt_key = self.gram_schmidt(self.prompt_key)
def gram_schmidt(self, vv):
def projection(u, v):
denominator = (u * u).sum()
if denominator < 1e-8:
return None
else:
return (v * u).sum() / denominator * u
# check if the tensor is 3D and flatten the last two dimensions if necessary
is_3d = len(vv.shape) == 3
if is_3d:
shape_2d = copy.deepcopy(vv.shape)
vv = vv.view(vv.shape[0],-1)
# swap rows and columns
vv = vv.T
# process matrix size
nk = vv.size(1)
uu = torch.zeros_like(vv, device=vv.device)
# get starting point
s = self.old_num_k
f = self.new_num_k
if s > 0:
uu[:, 0:s] = vv[:, 0:s].clone()
for k in range(s, f):
redo = True
while redo:
redo = False
vk = torch.randn_like(vv[:,k]).to(vv.device)
uk = 0
for j in range(0, k):
if not redo:
uj = uu[:, j].clone()
proj = projection(uj, vk)
if proj is None:
redo = True
print('restarting!!!')
else:
uk = uk + proj
if not redo: uu[:, k] = vk - uk
for k in range(s, f):
uk = uu[:, k].clone()
uu[:, k] = uk / (uk.norm())
# undo swapping of rows and columns
uu = uu.T
# return from 2D
if is_3d:
uu = uu.view(shape_2d)
return torch.nn.Parameter(uu)
def forward(self, x_embed, task_id=-1, prompt_mask=None, layer_num= -1, cls_features=None):
out = dict()
if self.prompt_pool:
if self.embedding_key == 'mean':
x_embed_mean = torch.mean(x_embed, dim=1)
elif self.embedding_key == 'max':
x_embed_mean = torch.max(x_embed, dim=1)[0]
elif self.embedding_key == 'mean_max':
x_embed_mean = torch.max(x_embed, dim=1)[0] + 2 * torch.mean(x_embed, dim=1)
elif self.embedding_key == 'cls':
if cls_features is None:
x_embed_mean = torch.max(x_embed, dim=1)[0] # B, C
else:
x_embed_mean = cls_features
else:
raise NotImplementedError("Not supported way of calculating embedding keys!")
# pt = int()
# s = int(self.task_count * self.pool_size / (self.n_tasks))
# f = int((self.task_count + 1) * self.pool_size / (self.n_tasks))
s = self.old_num_k
f = self.new_num_k
if self.training:
if task_id > 0:
prompt_key = torch.cat((self.prompt_key[:s].detach().clone(), self.prompt_key[s:f]), dim=0)
else:
prompt_key = self.prompt_key[s:f]
else:
prompt_key = self.prompt_key[0:f]
if self.use_prompt_embed_matcher:
x_embed_mean = self.prompt_embed_matcher(x_embed_mean)
# prompt_key = self.sigmoid(prompt_key)
# x_embed = self.sigmoid(x_embed)
prompt_key_norm = self.l2_normalize(prompt_key, dim=-1) # Pool_size, C
x_embed_norm = self.l2_normalize(x_embed_mean, dim=-1) # B, C
similarity = torch.matmul(prompt_key_norm, x_embed_norm.t()) # pool_size, B or Pool_size, #class, B
similarity = similarity.t() # B, pool_size
# similarity
out['similarity'] = similarity
# print('weighting score: ', similarity)
if self.use_prefix_tune_for_e_prompt:
# print("Prompt Shape = ", self.prompt.shape)
# exit()
batched_prompt_raw = self.prompt[layer_num].unsqueeze(0).repeat(x_embed.shape[0], 1, 1) # B, length, C
dual = 2
batch_size, length, embed_dim = batched_prompt_raw.shape
# print("Batched Prompt Shape = ", batched_prompt_raw.shape)
batched_prompt = batched_prompt_raw.reshape(
batch_size, dual, length // dual, self.num_heads, embed_dim // self.num_heads
)
# print("Batched Prompt Shape = ", batched_prompt.shape)
# exit()
else:
batched_prompt_raw = self.prompt[layer_num,:]
batch_size, top_k, length, embed_dim = batched_prompt_raw.shape
batched_prompt = batched_prompt_raw.reshape(
batch_size, top_k * length, embed_dim
)
# out['prompt_key_norm'] = prompt_key_norm
out['x_embed_norm'] = x_embed_norm
else:
# user prefix style
if self.use_prefix_tune_for_e_prompt:
assert embed_dim % self.num_heads == 0
if self.same_key_value:
prompt_pool_shape = (self.num_layers, 1, self.length,
self.num_heads, embed_dim // self.num_heads)
if self.prompt_init == 'zero':
self.prompt = nn.Parameter(torch.zeros(prompt_pool_shape))
elif self.prompt_init == 'uniform':
self.prompt = nn.Parameter(torch.randn(prompt_pool_shape))
nn.init.uniform_(self.prompt, -1, 1)
self.prompt = self.prompt.repeat(1, 2, 1, 1, 1)
else:
prompt_pool_shape = (self.num_layers, 2, self.length,
self.num_heads, embed_dim // self.num_heads)
if self.prompt_init == 'zero':
self.prompt = nn.Parameter(torch.zeros(prompt_pool_shape))
elif self.prompt_init == 'uniform':
self.prompt = nn.Parameter(torch.randn(prompt_pool_shape)) # num_layers, 2, length, num_heads, embed_dim // num_heads
nn.init.uniform_(self.prompt, -1, 1)
batched_prompt = self.prompt.unsqueeze(0).expand(-1, x_embed.shape[0], -1, -1, -1)
else:
prompt_pool_shape = (self.num_layers, self.length, embed_dim)
if self.prompt_init == 'zero':
self.prompt = nn.Parameter(torch.zeros(prompt_pool_shape))
elif self.prompt_init == 'uniform':
self.prompt = nn.Parameter(torch.randn(prompt_pool_shape))
nn.init.uniform_(self.prompt, -1, 1)
batched_prompt = self.prompt.unsqueeze(0).expand(-1, x_embed.shape[0], -1, -1)
batched_prompt = self.compute_conv_over_prompt(batched_prompt, f, layer_num, similarity)
out['batched_prompt'] = batched_prompt
return out
def ortho_penalty(self, t):
return ((t @t.T - torch.eye(t.shape[0]).cuda())**2).mean() * 1e-6
def compute_conv_over_prompt(self, batched_prompt, f, layer_num, similarity):
# batch_size, dual, length // dual, self.num_heads, embed_dim // self.num_heads
batched_prompt = batched_prompt.permute(1, 3, 0, 2, 4) # dual, num_heads, B, length, head_dim
k_prompt_list = []
v_prompt_list = []
k_prompt_layer = batched_prompt[0] # num_heads, B, length, head_dim
v_prompt_layer = batched_prompt[1] # num_heads, B,length, head_dim
n_heads, batch_size, length, head_dim = k_prompt_layer.shape
# print("K prompt layer shape: ", k_prompt_layer.shape)
length = length - self.ker_size + 1
head_dim = head_dim - self.ker_size + 1
new_k_prompt_layer = torch.zeros((n_heads, batch_size, length, head_dim), device=k_prompt_layer.device)
new_v_prompt_layer = torch.zeros((n_heads, batch_size, length, head_dim), device=k_prompt_layer.device)
for h in range(self.num_heads):
k_conv_vals = self.k_conv_vals[str(layer_num)][str(h)]
v_conv_vals = self.v_conv_vals[str(layer_num)][str(h)]
k_prompt_head = k_prompt_layer[h].unsqueeze(1) # B, 1, length, head_dim
v_prompt_head = v_prompt_layer[h].unsqueeze(1) # B, 1, length, head_dim
for p in range(f):
k_conv_val = k_conv_vals[p]
v_conv_val = v_conv_vals[p]
new_k_prompt_layer[h] += k_conv_val(k_prompt_head).squeeze(1) * similarity[:, p].unsqueeze(1).unsqueeze(2)
new_v_prompt_layer[h] += v_conv_val(v_prompt_head).squeeze(1) * similarity[:, p].unsqueeze(1).unsqueeze(2)
# k_prompt_list.append(new_k_prompt_layer) # num_layers, num_heads, B,length, head_dim
# v_prompt_list.append(new_v_prompt_layer)
# new_k_prompt = torch.stack(k_prompt_list, dim=0) # num_layers, num_heads, B,length, head_dim
# new_v_prompt = torch.stack(v_prompt_list, dim=0) # num_layers, num_heads, B,length, head_dim
new_batched_prompt = torch.stack([new_k_prompt_layer, new_v_prompt_layer], dim=0) # dual, num_heads, B, length, head_dim
new_batched_prompt = new_batched_prompt.permute(2, 0, 3, 1, 4) # B, dual, length, num_heads, head_dim
return new_batched_prompt
def conv_ortho(self, weights):
w = weights
in_channels, out_channels, kernel_size, kernel_size = w.shape
w =w.permute(1, 0, 2, 3). view(out_channels, -1)
W1 = w.t()
Ident = torch.eye(w.shape[1]).to(w.device)
# print("W1 shape: ", W1.shape, w.shape)
W_new = torch.matmul(W1, w)
Norm = W_new - Ident
b_k = torch.rand(Norm.shape[1]).to(Norm.device)
b_k = b_k.unsqueeze(1)
v1 = torch.matmul(Norm, b_k)
norm1 = torch.sum(torch.square(v1))**0.5
v2 = v1 / norm1
v3 = torch.matmul(Norm, v2)
return 0.01*(torch.sum(torch.square(v3))**0.5) + (1e-4)*(torch.sum(torch.square(w))**0.5)
def conv_orthogonality(self, conv_vals):
ortho_norm = 0
for i in range(self.num_layers):
for h in range(self.num_heads):
conv_val = conv_vals[str(i)][str(h)]
for j in range(len(conv_val)):
ortho_norm += self.conv_ortho(conv_val[j].weight)
return ortho_norm