-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathval_2D.py
71 lines (65 loc) · 2.52 KB
/
val_2D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import numpy as np
import torch
from medpy import metric
from scipy.ndimage import zoom
def calculate_metric_percase(pred, gt):
pred[pred > 0] = 1
gt[gt > 0] = 1
if pred.sum() > 0:
dice = metric.binary.dc(pred, gt)
if gt.sum() > 0:
hd95 = metric.binary.hd95(pred, gt)
else:
hd95 = 0
print('Warning: hd95 is 0 for a case!')
jc = metric.binary.jc(pred, gt)
return dice, hd95, jc
else:
return 0, 0, 0
def test_single_volume(image, label, net, classes, patch_size=[256, 256]):
image, label = image.squeeze(0).cpu().detach(
).numpy(), label.squeeze(0).cpu().detach().numpy()
prediction = np.zeros_like(label)
for ind in range(image.shape[0]):
slice = image[ind, :, :]
x, y = slice.shape[0], slice.shape[1]
slice = zoom(slice, (patch_size[0] / x, patch_size[1] / y), order=0)
input = torch.from_numpy(slice).unsqueeze(
0).unsqueeze(0).float().cuda()
net.eval()
with torch.no_grad():
output = net(input)
if len(output)>1:
output = output[0]
out = torch.argmax(torch.softmax(
output, dim=1), dim=1).squeeze(0)
out = out.cpu().detach().numpy()
pred = zoom(out, (x / patch_size[0], y / patch_size[1]), order=0)
prediction[ind] = pred
metric_list = []
for i in range(1, classes):
metric_list.append(calculate_metric_percase(
prediction == i, label == i))
return metric_list
def test_single_volume_refinev2(image, label, net, classes, patch_size=[256, 256]):
image, label = image.squeeze(0).cpu().detach(
).numpy(), label.squeeze(0).cpu().detach().numpy()
prediction = np.zeros_like(label)
for ind in range(image.shape[0]):
slice = image[ind, :, :]
x, y = slice.shape[0], slice.shape[1]
slice = zoom(slice, (patch_size[0] / x, patch_size[1] / y), order=0)
input = torch.from_numpy(slice).unsqueeze(
0).unsqueeze(0).float().cuda()
net.eval()
with torch.no_grad():
out_0 = torch.softmax(net(input), dim=1)
out = torch.argmax(out_0, dim=1).squeeze(0)
out = out.cpu().detach().numpy()
pred = zoom(out, (x / patch_size[0], y / patch_size[1]), order=0)
prediction[ind] = pred
metric_list = []
for i in range(1, classes):
metric_list.append(calculate_metric_percase(
prediction == i, label == i))
return metric_list