forked from spark-examples/pyspark-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpyspark-column-operations.py
57 lines (48 loc) · 1.66 KB
/
pyspark-column-operations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# -*- coding: utf-8 -*-
"""
author SparkByExamples.com
"""
from pyspark.sql import SparkSession,Row
spark = SparkSession.builder.appName('SparkByExamples.com').getOrCreate()
data=[("James",23),("Ann",40)]
df=spark.createDataFrame(data).toDF("name.fname","gender")
df.printSchema()
df.show()
from pyspark.sql.functions import col
df.select(col("`name.fname`")).show()
df.select(df["`name.fname`"]).show()
df.withColumn("new_col",col("`name.fname`").substr(1,2)).show()
df.filter(col("`name.fname`").startswith("J")).show()
new_cols=(column.replace('.', '_') for column in df.columns)
df2 = df.toDF(*new_cols)
df2.show()
# Using DataFrame object
df.select(df.gender).show()
df.select(df["gender"]).show()
#Accessing column name with dot (with backticks)
df.select(df["`name.fname`"]).show()
#Using SQL col() function
from pyspark.sql.functions import col
df.select(col("gender")).show()
#Accessing column name with dot (with backticks)
df.select(col("`name.fname`")).show()
#Access struct column
data=[Row(name="James",prop=Row(hair="black",eye="blue")),
Row(name="Ann",prop=Row(hair="grey",eye="black"))]
df=spark.createDataFrame(data)
df.printSchema()
df.select(df.prop.hair).show()
df.select(df["prop.hair"]).show()
df.select(col("prop.hair")).show()
df.select(col("prop.*")).show()
# Column operators
data=[(100,2,1),(200,3,4),(300,4,4)]
df=spark.createDataFrame(data).toDF("col1","col2","col3")
df.select(df.col1 + df.col2).show()
df.select(df.col1 - df.col2).show()
df.select(df.col1 * df.col2).show()
df.select(df.col1 / df.col2).show()
df.select(df.col1 % df.col2).show()
df.select(df.col2 > df.col3).show()
df.select(df.col2 < df.col3).show()
df.select(df.col2 == df.col3).show()