-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathclip_best_seg.py
77 lines (64 loc) · 1.93 KB
/
clip_best_seg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
from tsseg.utils import *
from tsseg.greed import *
from tsseg.omslr import *
def get_dataset():
lines = list(filter(None, open('gen_ds_noise.txt').read().split('\n')))
ds = []
for line in lines:
ds.append([float(i) for i in line.split(', ')])
return ds
def draw_segmentation(T, pivots, sub=None, **kwargs):
if sub: plt.subplot(sub)
for pvt in pivots:
plt.vlines(pvt-0.5, min(T), max(T), 'r', alpha=0.5)
plt.plot(T, '.-')
if 'title' in kwargs:
plt.title(kwargs['title'])
ds = get_dataset()
t = ds[50]
# t = t[:28]
for ps in range(1, 6):
print('len(p): {}'.format(ps))
fwn = open('fwn{}.txt'.format(ps), 'w')
fwo = open('fwo{}.txt'.format(ps), 'w')
for i, t in enumerate(ds):
print('ds: {}'.format(i))
sigma, beta, alpha = iter_sigma(t)
pvts = naive_minmax(t, ps, sigma)
pvt1 = pvts
pvts = [0] + pvts + [len(t)]
err1 = max([sigma[pvts[i], pvts[i+1]-1] for i in range(len(pvts)-1)])
gamma, rho = omslr_minmax(t, ps+1, sigma)
pvts = get_pivots(gamma)
pvt2 = pvts
pvts = [0] + pvts + [len(t)]
err2 = max([sigma[pvts[i], pvts[i+1]-1] for i in range(len(pvts)-1)])
fwn.write('{}\t{}\n'.format(pvt1, err1))
fwo.write('{}\t{}\n'.format(pvt2, err2))
fwn.close()
fwo.close()
# l, r = [], []
# for i in range(1, 27):
# l.append(sigma[0,i-1])
# r.append(sigma[i,-1])
# plt.plot(l, 'b.-')
# plt.plot(r, 'r.-')
# plt.show()
# print(sigma[0,8])
# print(regression_error(t[:9]))
# print(sigma[9,-1])
# print(regression_error(t[9:]))
# print()
# print(sigma[0,5])
# print(regression_error(t[:6]))
# print(sigma[6,-1])
# print(regression_error(t[6:]))
# print(sigma[0,6])
# print(regression_error(t[:7]))
# print(sigma[7,-1])
# print(regression_error(t[7:]))
# plt.show()