-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathresize_images.py
129 lines (106 loc) · 4.01 KB
/
resize_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import os
import signal
from functools import partial
from multiprocessing import Pool, cpu_count
import cv2
from broden_dataset_utils import adeseg
from broden_dataset_utils import osseg
def generate_resized_ade20k(ade_dir):
ds = adeseg.AdeSegmentation(
directory=ade_dir,
version="ADE20K_2016_07_26")
data_sets = {"ade20k": ds}
map_in_pool(partial(resize_data_ade, verbose=True),
all_dataset_segmentations(data_sets),
single_process=False,
verbose=True)
def resize_data_ade(record, verbose):
dataset, file_index, img_path, md = record
if verbose:
print("{} {}".format(file_index, os.path.basename(img_path)))
if not os.path.exists(img_path):
return 0
img = cv2.imread(img_path)
h, w = img.shape[0], img.shape[1]
max_size = 512
if w >= h > max_size:
h_new, w_new = max_size, round(w / float(h) * max_size)
elif h >= w > max_size:
h_new, w_new = round(h / float(w) * max_size), max_size
else:
return 0
cv2.imwrite(img_path, cv2.resize(img, (w_new, h_new),
interpolation=cv2.INTER_LINEAR))
seg_obj_path = md["seg_filename"]
seg = cv2.imread(seg_obj_path)
cv2.imwrite(seg_obj_path, cv2.resize(seg, (w_new, h_new),
interpolation=cv2.INTER_NEAREST))
for i, seg_part_path in enumerate(md["part_filenames"]):
seg = cv2.imread(seg_part_path)
cv2.imwrite(seg_part_path, cv2.resize(seg, (w_new, h_new),
interpolation=cv2.INTER_NEAREST))
return 0
def generate_resized_os(os_dir):
ds = osseg.OpenSurfaceSegmentation(directory=os_dir)
map_in_pool(partial(resize_data_os, verbose=True),
all_dataset_segmentations({"opensurfaces": ds}),
single_process=False,
verbose=True)
def resize_data_os(record, verbose):
dataset, file_index, filename, md = record
img_path, seg_path = md['filename'], md['seg_filename']
if verbose:
print("{} {}".format(file_index, os.path.basename(img_path)))
if not os.path.exists(img_path):
return 0
img = cv2.imread(img_path)
h, w = img.shape[0], img.shape[1]
max_size = 512
if w >= h > max_size:
h_new, w_new = max_size, round(w / float(h) * max_size)
elif h >= w > max_size:
h_new, w_new = round(h / float(w) * max_size), max_size
else:
return 0
cv2.imwrite(img_path, cv2.resize(img, (w_new, h_new),
interpolation=cv2.INTER_LINEAR))
seg = cv2.imread(seg_path)
cv2.imwrite(seg_path, cv2.resize(seg, (w_new, h_new),
interpolation=cv2.INTER_NEAREST))
return 0
def map_in_pool(fn, data, single_process=False, verbose=False):
"""
Our multiprocessing solution; wrapped to stop on ctrl-C well.
"""
if single_process:
return list(map(fn, data))
n_procs = min(cpu_count(), 16)
original_sigint_handler = setup_sigint()
pool = Pool(processes=n_procs, initializer=setup_sigint)
restore_sigint(original_sigint_handler)
try:
if verbose:
print('Mapping with %d processes' % n_procs)
res = pool.map_async(fn, data)
return res.get(31536000)
except KeyboardInterrupt:
print("Caught KeyboardInterrupt, terminating workers")
pool.terminate()
raise
finally:
pool.close()
pool.join()
def all_dataset_segmentations(data_sets):
for name, ds in list(data_sets.items()):
for i in list(range(ds.size())):
yield (name, i, ds.filename(i), ds.metadata(i))
def setup_sigint():
return signal.signal(signal.SIGINT, signal.SIG_IGN)
def restore_sigint(original):
signal.signal(signal.SIGINT, original)
def main():
root = "./broden_dataset"
generate_resized_ade20k(os.path.join(root, 'ade20k'))
generate_resized_os(os.path.join(root, 'opensurfaces'))
if __name__ == '__main__':
main()