-
-
Notifications
You must be signed in to change notification settings - Fork 203
/
Copy pathxgemm.cpp
306 lines (267 loc) · 15.3 KB
/
xgemm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements the Xgemm class (see the header for information about the class).
//
// =================================================================================================
#include "routines/level3/xgemm.hpp"
#include <string>
#include <vector>
namespace clblast {
// =================================================================================================
// Constructor: forwards to base class constructor
template <typename T>
Xgemm<T>::Xgemm(Queue &queue, EventPointer event, const std::string &name):
Routine(queue, event, name,
{"Copy","Pad","Transpose","Padtranspose","Xgemm","XgemmDirect","GemmRoutine"},
PrecisionValue<T>(), {}, {
#include "../../kernels/level3/level3.opencl"
#include "../../kernels/level3/copy_fast.opencl"
#include "../../kernels/level3/copy_pad.opencl"
#include "../../kernels/level3/transpose_fast.opencl"
#include "../../kernels/level3/transpose_pad.opencl"
#include "../../kernels/level3/convert_symmetric.opencl"
#include "../../kernels/level3/convert_triangular.opencl"
#include "../../kernels/level3/convert_hermitian.opencl"
, // separated in multiple parts to prevent C1091 in MSVC 2013
#include "../../kernels/level3/xgemm_direct_part1.opencl"
#include "../../kernels/level3/xgemm_direct_part2.opencl"
#include "../../kernels/level3/xgemm_direct_part3.opencl"
, // separated in multiple parts to prevent C1091 in MSVC 2013
#include "../../kernels/level3/xgemm_part1.opencl"
#include "../../kernels/level3/xgemm_part2.opencl"
, // separated in multiple parts to prevent C1091 in MSVC 2013
#include "../../kernels/level3/xgemm_part3.opencl"
#include "../../kernels/level3/xgemm_part4.opencl"
}) {
}
// =================================================================================================
// The main routine
template <typename T>
void Xgemm<T>::DoGemm(const Layout layout,
const Transpose a_transpose, const Transpose b_transpose,
const size_t m, const size_t n, const size_t k,
const T alpha,
const Buffer<T> &a_buffer, const size_t a_offset, const size_t a_ld,
const Buffer<T> &b_buffer, const size_t b_offset, const size_t b_ld,
const T beta,
const Buffer<T> &c_buffer, const size_t c_offset, const size_t c_ld,
const Buffer<T> &temp_buffer, const bool temp_buffer_provided) { // optional arguments
// Two methods to choose from, select which one to run
const auto do_gemm_direct = UseDirectKernel(m, n, k, db_["XGEMM_MIN_INDIRECT_SIZE"]);
const auto gemm_kernel_id = (do_gemm_direct) ? 0 : db_["GEMMK"];
// Computes the transpose/conjugate options and sets the a/b/c sizes based on that
bool a_do_transpose, b_do_transpose, c_do_transpose, a_conjugate, b_conjugate;
size_t a_one, a_two, b_one, b_two, c_one, c_two;
ProcessArguments(layout, a_transpose, b_transpose, m, n, k,
a_one, a_two, b_one, b_two, c_one, c_two,
a_do_transpose, b_do_transpose, c_do_transpose, a_conjugate, b_conjugate,
gemm_kernel_id);
// Tests three matrices (A, B, C) for validity, first from a perspective of the OpenCL buffers and
// their sizes, and then from a perspective of parameter values (e.g. m, n, k). Tests whether the
// OpenCL buffers are valid and non-zero and whether the OpenCL buffers have sufficient storage
// space. Also tests that the leading dimensions of:
// matrix A cannot be less than K when rotated, or less than M when not-rotated
// matrix B cannot be less than N when rotated, or less than K when not-rotated
// matrix C cannot be less than N when rotated, or less than M when not-rotated
TestMatrixA(a_one, a_two, a_buffer, a_offset, a_ld);
TestMatrixB(b_one, b_two, b_buffer, b_offset, b_ld);
TestMatrixC(c_one, c_two, c_buffer, c_offset, c_ld);
// Selects which version of GEMM to run
if (do_gemm_direct) { // for small sizes (single kernel)
GemmDirect(m, n, k, alpha,
a_buffer, a_offset, a_ld, b_buffer, b_offset, b_ld, beta,
c_buffer, c_offset, c_ld,
a_do_transpose, b_do_transpose, c_do_transpose, a_conjugate, b_conjugate);
}
else { // for larger sizes (pre/post-processing plus a very fast kernel)
GemmIndirect(m, n, k, alpha,
a_buffer, a_offset, a_ld, b_buffer, b_offset, b_ld, beta,
c_buffer, c_offset, c_ld,
a_do_transpose, b_do_transpose, c_do_transpose, a_conjugate, b_conjugate,
a_one, a_two, b_one, b_two, c_one, c_two,
temp_buffer, temp_buffer_provided);
}
}
// =================================================================================================
// The indirect version of GEMM. This uses the faster but non-general kernel. It has specific
// requirements, but several pre and post-processing kernels take care of those. However, the
// overhead of these extra kernels might not be ideal for certain devices/arguments.
template <typename T>
void Xgemm<T>::GemmIndirect(const size_t m, const size_t n, const size_t k,
const T alpha,
const Buffer<T> &a_buffer, const size_t a_offset, const size_t a_ld,
const Buffer<T> &b_buffer, const size_t b_offset, const size_t b_ld,
const T beta,
const Buffer<T> &c_buffer, const size_t c_offset, const size_t c_ld,
const bool a_do_transpose, const bool b_do_transpose, const bool c_do_transpose,
const bool a_conjugate, const bool b_conjugate,
const size_t a_one, const size_t a_two,
const size_t b_one, const size_t b_two,
const size_t c_one, const size_t c_two,
const Buffer<T> &temp_buffer, const bool temp_buffer_provided) {
// Calculates the ceiled versions of m, n, and k
const auto global_divider_one = c_want_rotated_(db_["GEMMK"]) ? db_["NWG"] : db_["MWG"];
const auto global_divider_two = c_want_rotated_(db_["GEMMK"]) ? db_["MWG"] : db_["NWG"];
const auto m_ceiled = Ceil(m, global_divider_one);
const auto n_ceiled = Ceil(n, global_divider_two);
const auto k_ceiled = Ceil(k, db_["KWG"] * db_["KREG"]);
// Computes the first and second "internal" (ceiled) dimensions of the 3 matrices taking into account
// whether the matrices need to be rotated or not for the kernel.
size_t a_one_i, a_two_i, b_one_i, b_two_i, c_one_i, c_two_i;
CalculateInternalDimensions(m, n, k, db_["MWG"], db_["NWG"], db_["KWG"] * db_["KREG"],
a_one_i, a_two_i, b_one_i, b_two_i, c_one_i, c_two_i,
db_["GEMMK"]);
// Determines whether or not temporary matrices are needed
auto a_no_temp = NoTempBuffer(a_one, a_one_i, a_two, a_two_i, a_ld, a_offset, a_do_transpose, a_conjugate);
auto b_no_temp = NoTempBuffer(b_one, b_one_i, b_two, b_two_i, b_ld, b_offset, b_do_transpose, b_conjugate);
auto c_no_temp = NoTempBuffer(c_one, c_one_i, c_two, c_two_i, c_ld, c_offset, c_do_transpose, false);
// Computes the sizes and offsets for (optional) temporary buffers for the 3 matrices
auto b_temp_offset = size_t{0};
auto c_temp_offset = size_t{0};
const auto temp_size = ComputeTempSize(a_no_temp, b_no_temp, c_no_temp,
a_one_i*a_two_i, b_one_i*b_two_i, c_one_i*c_two_i,
b_temp_offset, c_temp_offset);
if (!IsMultiple(b_temp_offset, db_["VWN"])) { throw BLASError(StatusCode::kUnexpectedError); }
if (!IsMultiple(c_temp_offset, db_["VWM"])) { throw BLASError(StatusCode::kUnexpectedError); }
// Creates the buffer for the (optional) temporary matrices. Note that we use 'a_buffer' in case
// when no temporary buffer is needed, but that's just to make it compile: it is never used.
const auto temp_buffer_all = (temp_buffer_provided) ? temp_buffer :
((temp_size > 0) ? Buffer<T>(context_, temp_size) : a_buffer);
// Verifies if the provided temporary buffer is large enough
if (temp_buffer_provided) {
const auto required_size = temp_size * sizeof(T);
if (temp_buffer_all.GetSize() < required_size) { throw BLASError(StatusCode::kInsufficientMemoryTemp); }
}
// Sets the buffer pointers for (temp) matrices A, B, and C
const auto a_temp = (a_no_temp) ? a_buffer : temp_buffer_all;
const auto b_temp = (b_no_temp) ? b_buffer : temp_buffer_all;
const auto c_temp = (c_no_temp) ? c_buffer : temp_buffer_all;
// Events of all kernels (including pre/post processing kernels)
auto eventWaitList = std::vector<Event>();
auto emptyEventList = std::vector<Event>();
// Runs the pre-processing kernel for matrix A. This transposes the matrix, but also pads zeros
// to fill it up until it reaches a certain multiple of size (kernel parameter dependent). In
// case nothing has to be done, these kernels can be skipped.
if (!a_no_temp) {
auto eventProcessA = Event();
PadCopyTransposeMatrix(queue_, device_, db_, eventProcessA.pointer(), emptyEventList,
a_one, a_two, a_ld, a_offset, a_buffer,
a_one_i, a_two_i, a_one_i, 0, a_temp,
ConstantOne<T>(), program_,
true, a_do_transpose, a_conjugate);
eventWaitList.push_back(eventProcessA);
}
// As above, but now for matrix B
if (!b_no_temp) {
auto eventProcessB = Event();
PadCopyTransposeMatrix(queue_, device_, db_, eventProcessB.pointer(), emptyEventList,
b_one, b_two, b_ld, b_offset, b_buffer,
b_one_i, b_two_i, b_one_i, b_temp_offset, b_temp,
ConstantOne<T>(), program_,
true, b_do_transpose, b_conjugate);
eventWaitList.push_back(eventProcessB);
}
// As above, but now for matrix C. This is only necessary if C is used both as input and output.
if (!c_no_temp && beta != static_cast<T>(0)) {
auto eventProcessC = Event();
PadCopyTransposeMatrix(queue_, device_, db_, eventProcessC.pointer(), emptyEventList,
c_one, c_two, c_ld, c_offset, c_buffer,
c_one_i, c_two_i, c_one_i, c_temp_offset, c_temp,
ConstantOne<T>(), program_,
true, c_do_transpose, false);
eventWaitList.push_back(eventProcessC);
}
// Retrieves the Xgemm kernel from the compiled binary
auto kernel = Kernel(program_, "Xgemm");
// Sets the kernel arguments
kernel.SetArgument(0, static_cast<int>(m_ceiled));
kernel.SetArgument(1, static_cast<int>(n_ceiled));
kernel.SetArgument(2, static_cast<int>(k_ceiled));
kernel.SetArgument(3, GetRealArg(alpha));
kernel.SetArgument(4, GetRealArg(beta));
kernel.SetArgument(5, a_temp());
kernel.SetArgument(6, b_temp());
kernel.SetArgument(7, c_temp());
kernel.SetArgument(8, static_cast<int>(b_temp_offset / db_["VWN"]));
kernel.SetArgument(9, static_cast<int>(c_temp_offset / db_["VWM"]));
// Computes the global and local thread sizes
const auto global = std::vector<size_t>{
(c_one_i * db_["MDIMC"]) / db_["MWG"],
(c_two_i * db_["NDIMC"]) / db_["NWG"]
};
const auto local = std::vector<size_t>{db_["MDIMC"], db_["NDIMC"]};
// Launches the kernel
auto eventKernel = Event();
auto eventPointer = (!c_no_temp) ? eventKernel.pointer() : event_;
RunKernel(kernel, queue_, device_, global, local, eventPointer, eventWaitList);
// Runs the post-processing kernel if needed
if (!c_no_temp) {
eventWaitList.push_back(eventKernel);
PadCopyTransposeMatrix(queue_, device_, db_, event_, eventWaitList,
c_one_i, c_two_i, c_one_i, c_temp_offset, c_temp,
c_one, c_two, c_ld, c_offset, c_buffer,
ConstantOne<T>(), program_,
false, c_do_transpose, false);
}
}
// =================================================================================================
// The direct version of GEMM, requiring just one kernel, no pre or post-processing kernels.
template <typename T>
void Xgemm<T>::GemmDirect(const size_t m, const size_t n, const size_t k,
const T alpha,
const Buffer<T> &a_buffer, const size_t a_offset, const size_t a_ld,
const Buffer<T> &b_buffer, const size_t b_offset, const size_t b_ld,
const T beta,
const Buffer<T> &c_buffer, const size_t c_offset, const size_t c_ld,
const bool a_do_transpose, const bool b_do_transpose, const bool c_do_transpose,
const bool a_conjugate, const bool b_conjugate) {
// Retrieves the proper XgemmDirect kernel from the compiled binary
const auto name = (a_do_transpose) ? (b_do_transpose ? "XgemmDirectTT" : "XgemmDirectTN") :
(b_do_transpose ? "XgemmDirectNT" : "XgemmDirectNN");
auto kernel = Kernel(program_, name);
// Sets the kernel arguments
kernel.SetArgument(0, static_cast<int>(m));
kernel.SetArgument(1, static_cast<int>(n));
kernel.SetArgument(2, static_cast<int>(k));
kernel.SetArgument(3, GetRealArg(alpha));
kernel.SetArgument(4, GetRealArg(beta));
kernel.SetArgument(5, a_buffer());
kernel.SetArgument(6, static_cast<int>(a_offset));
kernel.SetArgument(7, static_cast<int>(a_ld));
kernel.SetArgument(8, b_buffer());
kernel.SetArgument(9, static_cast<int>(b_offset));
kernel.SetArgument(10, static_cast<int>(b_ld));
kernel.SetArgument(11, c_buffer());
kernel.SetArgument(12, static_cast<int>(c_offset));
kernel.SetArgument(13, static_cast<int>(c_ld));
kernel.SetArgument(14, static_cast<int>(c_do_transpose));
kernel.SetArgument(15, static_cast<int>(a_conjugate));
kernel.SetArgument(16, static_cast<int>(b_conjugate));
// Computes the global and local thread sizes
const auto m_ceiled = Ceil(m, db_["WGD"]);
const auto n_ceiled = Ceil(n, db_["WGD"]);
const auto global = std::vector<size_t>{
// CeilDiv(m * db_["MDIMCD"], db_["WGD"]),
// CeilDiv(n * db_["NDIMCD"], db_["WGD"])
(m_ceiled * db_["MDIMCD"]) / db_["WGD"],
(n_ceiled * db_["NDIMCD"]) / db_["WGD"]
};
const auto local = std::vector<size_t>{db_["MDIMCD"], db_["NDIMCD"]};
// Launches the kernel
RunKernel(kernel, queue_, device_, global, local, event_);
}
// =================================================================================================
// Compiles the templated class
template class Xgemm<half>;
template class Xgemm<float>;
template class Xgemm<double>;
template class Xgemm<float2>;
template class Xgemm<double2>;
// =================================================================================================
} // namespace clblast