-
Notifications
You must be signed in to change notification settings - Fork 0
/
PCM20210729_SICP_1.1.6_Conditional_Expressions_and_Predicates.jl
566 lines (451 loc) · 16 KB
/
PCM20210729_SICP_1.1.6_Conditional_Expressions_and_Predicates.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
### A Pluto.jl notebook ###
# v0.19.12
using Markdown
using InteractiveUtils
# ╔═╡ 4ba04c25-a29b-4bf0-be10-be3f20279f28
md"
===================================================================================
### SICP: [1.1.6 Conditional Expressions and Predicates](https://sarabander.github.io/sicp/html/1_002e1.xhtml#g_t1_002e1_002e6)
###### file: PCM20210729\_SICP\_1.1.6\_Conditional\_Expressions\_and_Predicates.jl
###### Julia/Pluto.jl-code (1.8.0/19.11) by PCM *** 2022/11/08 ***
===================================================================================
"
# ╔═╡ e8d5627a-1e6a-48a4-ad50-6013870b8890
md"
###### Implication *Lucky Luke* and *me*
People whisper: *Lucky Luke is the man who shoots faster than his shadow*.
After some deep thinking I come up with this implication: *If Lucky Luke shoots faster than his shadow, I also can do the very same.*
This implication is true from two different viewpoints. The *first* is the view of a *psychologist*. (S)he knows that human skill to differentiate two time-sequential events is imperfect. So *both* events in the implication are *false*. Thus the whole implication is *true*.
The *second* viewpoint is that of a *physicist*. From that view *both* events are *true*. The action is always a tiny little moment earlier than the generated shadow on a reflecting wall or other canvas. This is explicated in more detail by [*Nándor Bokor*](https://iopscience.iop.org/article/10.1088/0031-9120/50/6/733)(2015). So this implication is also *true*.
---
"
# ╔═╡ 33f31484-b07f-4550-a829-37f1d4f7feba
md"
#### 1.1.6.1 SICP-Scheme-like *functional* Julia
"
# ╔═╡ 20a147db-1759-4445-a60b-f75e9374864f
md"
---
$$\begin{array}{ccc}
\hline
(cond & (<p_1> & <e_1>) \\
& (<p_1> & <e_1>) \\
& ... & ... \\
& (<p_n> & <e_n>)) \\
\hline
\end{array}$$
**Fig. 1.1.6.1** SICP (Scheme/Lisp) conditional expression with *non-strict* evaluation
---
"
# ╔═╡ b649e901-d3bf-4bf0-9ba8-69cd4e6bf550
md"
###### *case analysis* for absolute value function $$|x|$$
"
# ╔═╡ 8287786a-0c31-4d58-83fe-ff4d75513ebe
md"
$$|x| = \cases{\;\;\; x \text{ if } x \gt 0 \cr \;\;\; 0 \text{ if } x = 0 \cr -x \text{ if } x < 0}$$
"
# ╔═╡ 638667fc-0381-47a5-9288-e10b973e10b7
abs1(x) =
x > 0 ? x :
x == 0 ? 0 :
x < 0 ? -x :
"unidentified case"
# ╔═╡ c0df9843-2a0c-4c00-a3ee-78a153bde39f
abs1(+4.9)
# ╔═╡ 93ac3435-1b97-4a36-8868-69a40e6bfe67
abs1(0.0)
# ╔═╡ 5eaff842-ff87-445a-9749-052ef1ec8cb9
abs1(-4.9)
# ╔═╡ 50969205-37b7-4d35-8fa9-fa151b11632d
abs2(x) =
if x > 0
x
elseif x == 0
0
else
-x
end # if
# ╔═╡ e1ef77b1-03a2-478b-8fbd-17556c5e51bd
abs2(4.9)
# ╔═╡ 49ac622a-3846-4096-ae67-7380363d395d
abs2(0)
# ╔═╡ 126c883d-243c-4529-bc5a-d23f2337f67f
abs2(-4.9)
# ╔═╡ 17ffb5ef-1b1a-49f6-8f1d-cc14580781af
abs3(x) =
if x > 0
x
else -x
end # if
# ╔═╡ 461a492a-6a79-4df5-ac46-a8b915e2afc5
abs3(4.9)
# ╔═╡ 0339e437-491f-4a04-b3ff-4bf6aa8aceaa
abs3(0)
# ╔═╡ b0d5154a-e71d-4212-bf2c-58a13fadf1e7
abs3(-4.9)
# ╔═╡ 752bc49a-35f2-48ea-8ea5-a05783996b3f
abs4(x) = x > 0 ? x : -x
# ╔═╡ 3e388e69-2c1a-4d37-906f-4c67797b27b3
abs4(4.9)
# ╔═╡ 2ab60d27-1cd4-4098-9ebb-08bdc3eeaae9
abs4(0)
# ╔═╡ bd28e726-cc8f-4aa9-bee1-d7f969a60aa4
abs4(-4.9)
# ╔═╡ 7efcf92c-963e-428e-9393-547bd58a7eea
md"
##### *Binary* Boolean operators with *nonstrict* ('short circuit') evaluation
"
# ╔═╡ f379ad14-d42d-469e-a341-d8082b0f0b83
md"
###### 1st *binary* method with *nonstrict* evaluation of function 'and'
"
# ╔═╡ 6ea1c6c7-56f4-404d-825b-4ddd18e08915
and(x, y) = x && y # definition of *binary* function 'and'
# ╔═╡ 848fd3c8-d2df-4e9c-985e-8093f2cfced9
md"
###### 1st *binary* method with *nonstrict* evaluation of function 'or'
"
# ╔═╡ b3ba0af4-ad8f-4d10-b8ca-336b8df614e3
or(x, y) = x || y
# ╔═╡ 69f36630-a57f-4c63-8e01-f38b0a1649a4
not(x) = !x
# ╔═╡ a7e1951f-bf97-4966-b93b-104c7b165f67
not(true)
# ╔═╡ d41e6ce1-1192-495a-8bfd-74936101efa3
not(false)
# ╔═╡ 4188358b-3a15-4bae-addc-54da9bfc87b8
md"
###### compound predicate $$x \ge y := (x > y) \lor (x = y)$$
"
# ╔═╡ fad8b34d-30e1-4ff8-a180-59efde3925fa
geEq2(x, y) = x > y || x == y
# ╔═╡ ad41d505-3803-420f-a077-5f147e32b83e
geEq2(3, 5)
# ╔═╡ 2a1fbc65-f991-46e3-8057-35f8085fc394
geEq2(5, 5)
# ╔═╡ d2a400fa-a179-4ae5-94af-8e1af14ae116
geEq2(7, 5)
# ╔═╡ e40e61d9-692e-4838-a84d-11c51911e3d4
md"
###### compound predicate $$x \ge y := (x \not \lt y)$$
"
# ╔═╡ 7c2f185f-e363-4a8e-8b52-80fef2622aa7
geEq3(x, y) = not(x < y)
# ╔═╡ a96202d4-6f52-40cc-a421-e81bb98c363b
geEq3(5, 3)
# ╔═╡ 5907313d-43b1-4c67-84dd-ea0f5c1f3da8
geEq3(3, 3)
# ╔═╡ b153aba7-acee-4b0e-84e7-1e8aa6f5eea9
geEq3(3, 5)
# ╔═╡ adb0c3c3-97b9-45f1-ae42-e05539dbc427
geEq4(x, y) = !(x < y)
# ╔═╡ e668030b-8d70-4bd2-887c-1bafb6fe5928
geEq4(5, 3)
# ╔═╡ 5decbbfe-402e-472a-9e22-402f7178d3d0
geEq4(3, 3)
# ╔═╡ 6f5a6658-4128-4829-be58-4831b1496d0b
geEq4(3, 5)
# ╔═╡ 18c20c8c-842a-4f03-b3a7-0d5442ae905e
geEq5(x, y) = !<(x, y)
# ╔═╡ d91629d0-79e1-4ddd-9a28-3bc1a9948ff5
geEq5(5, 3)
# ╔═╡ c77e9bd1-5964-411f-831c-9b76b05ff640
geEq5(3, 3)
# ╔═╡ 93fb8d81-c942-420d-ab91-8371a4af3062
geEq5(3, 5)
# ╔═╡ 8208a2ee-8698-4a8c-81e2-3624abc4f7d3
md"
###### n-ary Boolean operators with *strict* evaluation
###### function application forms of *bitwise* '&' and '|'
"
# ╔═╡ c40f2fe6-c8ac-4ace-bb54-148506bdb7a1
(&)(true, true, true)
# ╔═╡ 5f74d11d-f384-4453-b268-5c81ee77cf65
(&)(true, true, false)
# ╔═╡ cf1ae6ed-d21a-4ca3-bfee-cbf0e1549667
(|)(true, true, true)
# ╔═╡ f3cc88a0-e5e0-4e75-8953-bd361937140b
(|)(true, true, false)
# ╔═╡ 22f11800-1d96-46d4-9ac0-4ae817f1b4f1
(|)(false, false, false)
# ╔═╡ 7ad09c29-c9cf-49c9-988f-83b7e4b05393
md"
###### 2nd *nary* method with *strict* evaluation of function 'and'
"
# ╔═╡ f3e3edfa-c5c5-4c1a-805d-c46370298c62
and(x, y, rest...) = (&)(x, y, rest...) # 2nd (!) method with strict evaluation
# ╔═╡ 70cb087f-17d8-4457-90f1-7cf1d16d9e63
and(true, true)
# ╔═╡ 995d50b4-4e53-4787-b730-df40db2029b1
and(true, false)
# ╔═╡ 9e0cac6c-1121-4e0a-8750-7ad5736974c9
and(true, true, false)
# ╔═╡ 5414db5c-5cc7-4bd5-8c19-aa12e43dfee2
and(true, true, true)
# ╔═╡ 01e00375-4405-4ecb-abf2-8fcb51d6caa4
md"
###### 2nd *nary* method with *strict* evaluation of function 'or'
"
# ╔═╡ d7ff540f-4b3c-4f4e-a7ad-eb5487fd98d5
or(x, y, rest...) = (|)(x, y, rest...) # 2nd (!) method with strict evaluation
# ╔═╡ 42c5e112-db6f-4874-a227-5a06d8054102
or(false, true)
# ╔═╡ 63bd6526-ea6b-4b48-9456-4c5f05045ef1
or(false, false)
# ╔═╡ ce79a92e-9bb9-48cd-834c-34eb61c67d18
geEq1(x, y) = or((x > y), (x == y))
# ╔═╡ 91eeb0b4-c921-4672-8bee-1d18b2c3c13c
geEq1(5, 3)
# ╔═╡ 234fcd0f-cebc-4adb-8730-3cd2fad15ba0
geEq1(3, 3)
# ╔═╡ 081df546-68eb-4609-8671-e1a6395d9bb9
geEq1(2, 3)
# ╔═╡ 18ee8e44-abd2-4b6e-a66f-5be2dcda2978
or(true, true, false)
# ╔═╡ 6877d30c-7b37-4ec5-9fc7-d6b5fbe382bd
or(false, false, false)
# ╔═╡ 9326271a-ce21-4254-ab26-a42f87d18bc5
md"
---
#### 1.1.6.2 *idiomatic* Julia ...
##### ... with *infix* operators and *chaining* comparisons
$$5 < 2 < 10 := (5 < 2) \land (2 < 10)$$
"
# ╔═╡ 96004b6e-d0f7-4afa-8ee2-f61aa84af474
(5 < 2) && (2 < 10)
# ╔═╡ b00ca9fe-70fa-4d24-808f-581965d76df6
5 < 2 < 10
# ╔═╡ cedbf13f-be78-43d7-879a-63971f02c8f5
((5 < 2) && (2 < 10)) == (5 < 2 < 10)
# ╔═╡ f6ee94f3-a049-44a1-91ba-bb6daf3d0140
((5 < 2) && (2 < 10)) === (5 < 2 < 10)
# ╔═╡ be1bb1e0-52f5-4158-9625-aa9f900b3d02
5 < 6 < 10
# ╔═╡ faeff098-044b-49bc-85a3-c0c655de80a6
(5 < 6) && (6 < 10)
# ╔═╡ f7b6234a-1951-4111-9095-418e6a2a4d49
(5 < 6 < 10) == ((5 < 6) && (6 < 10))
# ╔═╡ c1d0f438-b1d0-44d3-8836-858fcb229935
md"
---
###### Example: Implication
$$\forall x,y: positive: (x^2 \lt y^2) \Longrightarrow (x \lt y)$$
This implication is proven for *positive* $$x,y$$ in Arens et al. (2018, p.29) in a tutorial style in three alternative ways (*direct, indirect*, and *contradiction*).
This statement is even true for *nonpositive* $$x, y$$
$$\forall x,y: x < y: (x^2 \lt y^2) \Longrightarrow (x \lt y)$$
"
# ╔═╡ 91d1967b-5fc1-42db-83f2-65858a04f748
let
x = 0; y = 1
#--------------
if x^2 < y^2
#----------
if x < y
true
else
false
end # if
#----------
else
true
end # if
#--------------
end # let
# ╔═╡ f6bb9860-73c8-4d45-9eb9-76bbf9e4674e
let
x = 0; y = 1
#------------------------------------------
x^2 < y^2 ? (x < y ? true : false) : true
#------------------------------------------
end # let
# ╔═╡ dbc6f577-b2d1-4396-af18-e5066af805d1
let # is 'false' because x^2 < y^2 and not(x < y)
x = 0; y = -1
#------------------------------------------
x^2 < y^2 ? (x < y ? true : false) : true
#------------------------------------------
end # let
# ╔═╡ 5a755ee8-4dde-42d0-af88-1d8ae231a887
let # is 'true' because not(x^2 < y^2)
x = -1; y = 0
#------------------------------------------
x^2 < y^2 ? (x < y ? true : false) : true
#------------------------------------------
end # let
# ╔═╡ 18a5a84c-c07f-487b-a671-bb7daf4f0ce3
let # 'false' because x^2 < y^2 and not(x < y)
x = -2; y = -3
#------------------------------------------
x^2 < y^2 ? (x < y ? true : false) : true
#------------------------------------------
end # let
# ╔═╡ 49272f94-62e9-4e91-8397-bc328b63f63d
let # is 'true' because not(x^2 < y^2)
x = 3; y = 3
#--------------
if x^2 < y^2
#----------
if x < y
true
else
false
end # if
#----------
else
true
end # if
#--------------
end # let
# ╔═╡ 49c8f3c1-a043-44c3-9c01-b26c9a1e7f24
let # is 'true' because not(x^2 < y^2)
x = 3; y = 3
#------------------------------------------
x^2 < y^2 ? (x < y ? true : false) : true
#------------------------------------------
end # let
# ╔═╡ 4d30686d-0dc1-4d62-aa8a-1409587f2654
let # is 'true' because not(x^2 < y^2)
x = 3; y = 2
#--------------
if x^2 < y^2
#----------
if x < y
true
else
false
end # if
#----------
else
true
end # if
#--------------
end # let
# ╔═╡ 706a89f9-2c14-4b54-819e-2d009e777507
let # is 'true' because not(x^2 < y^2)
x = 3; y = 2
#------------------------------------------
x^2 < y^2 ? (x < y ? true : false) : true
#------------------------------------------
end # let
# ╔═╡ 9a5d6d10-27d7-4cac-a950-6e5668955067
md"
---
##### References
- **Abelson, H., Sussman, G.J. & Sussman, J.**, Structure and Interpretation of Computer Programs, Cambridge, Mass.: MIT Press, (2/e), 1996, [https://sarabander.github.io/sicp/](https://sarabander.github.io/sicp/), last visit 2022/08/23
- **Arens, T., Hettlich, F., Karpfinger, Chr., Kockelkorn, U., Lichtenegger, K., & Stachel, H.,** Mathematik, 4/e, Heidelberg, Springer Spektrum, [https://doi.org/10.1007/978-3-662-56741-8](https://doi.org/10.1007/978-3-662-56741-8)
- **Nándor Bokor**, 2015 Phys. Educ. 50 733, online [*here*](https://iopscience.iop.org/article/10.1088/0031-9120/50/6/733); last visit 2022/11/08
"
# ╔═╡ e89faf5f-04a8-44c3-a941-381d41782d40
md"
---
##### end of ch. 1.1.6
===================================================================================
This is a **draft** under the [Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/) license. Comments, suggestions for improvement and bug reports are welcome: **claus.moebus(@)uol.de**
===================================================================================
"
# ╔═╡ 00000000-0000-0000-0000-000000000001
PLUTO_PROJECT_TOML_CONTENTS = """
[deps]
"""
# ╔═╡ 00000000-0000-0000-0000-000000000002
PLUTO_MANIFEST_TOML_CONTENTS = """
# This file is machine-generated - editing it directly is not advised
julia_version = "1.8.2"
manifest_format = "2.0"
project_hash = "da39a3ee5e6b4b0d3255bfef95601890afd80709"
[deps]
"""
# ╔═╡ Cell order:
# ╟─4ba04c25-a29b-4bf0-be10-be3f20279f28
# ╟─e8d5627a-1e6a-48a4-ad50-6013870b8890
# ╟─33f31484-b07f-4550-a829-37f1d4f7feba
# ╟─20a147db-1759-4445-a60b-f75e9374864f
# ╟─b649e901-d3bf-4bf0-9ba8-69cd4e6bf550
# ╟─8287786a-0c31-4d58-83fe-ff4d75513ebe
# ╠═638667fc-0381-47a5-9288-e10b973e10b7
# ╠═c0df9843-2a0c-4c00-a3ee-78a153bde39f
# ╠═93ac3435-1b97-4a36-8868-69a40e6bfe67
# ╠═5eaff842-ff87-445a-9749-052ef1ec8cb9
# ╠═50969205-37b7-4d35-8fa9-fa151b11632d
# ╠═e1ef77b1-03a2-478b-8fbd-17556c5e51bd
# ╠═49ac622a-3846-4096-ae67-7380363d395d
# ╠═126c883d-243c-4529-bc5a-d23f2337f67f
# ╠═17ffb5ef-1b1a-49f6-8f1d-cc14580781af
# ╠═461a492a-6a79-4df5-ac46-a8b915e2afc5
# ╠═0339e437-491f-4a04-b3ff-4bf6aa8aceaa
# ╠═b0d5154a-e71d-4212-bf2c-58a13fadf1e7
# ╠═752bc49a-35f2-48ea-8ea5-a05783996b3f
# ╠═3e388e69-2c1a-4d37-906f-4c67797b27b3
# ╠═2ab60d27-1cd4-4098-9ebb-08bdc3eeaae9
# ╠═bd28e726-cc8f-4aa9-bee1-d7f969a60aa4
# ╟─7efcf92c-963e-428e-9393-547bd58a7eea
# ╟─f379ad14-d42d-469e-a341-d8082b0f0b83
# ╠═6ea1c6c7-56f4-404d-825b-4ddd18e08915
# ╠═70cb087f-17d8-4457-90f1-7cf1d16d9e63
# ╠═995d50b4-4e53-4787-b730-df40db2029b1
# ╟─848fd3c8-d2df-4e9c-985e-8093f2cfced9
# ╠═b3ba0af4-ad8f-4d10-b8ca-336b8df614e3
# ╠═42c5e112-db6f-4874-a227-5a06d8054102
# ╠═63bd6526-ea6b-4b48-9456-4c5f05045ef1
# ╠═69f36630-a57f-4c63-8e01-f38b0a1649a4
# ╠═a7e1951f-bf97-4966-b93b-104c7b165f67
# ╠═d41e6ce1-1192-495a-8bfd-74936101efa3
# ╟─4188358b-3a15-4bae-addc-54da9bfc87b8
# ╠═ce79a92e-9bb9-48cd-834c-34eb61c67d18
# ╠═91eeb0b4-c921-4672-8bee-1d18b2c3c13c
# ╠═234fcd0f-cebc-4adb-8730-3cd2fad15ba0
# ╠═081df546-68eb-4609-8671-e1a6395d9bb9
# ╠═fad8b34d-30e1-4ff8-a180-59efde3925fa
# ╠═ad41d505-3803-420f-a077-5f147e32b83e
# ╠═2a1fbc65-f991-46e3-8057-35f8085fc394
# ╠═d2a400fa-a179-4ae5-94af-8e1af14ae116
# ╟─e40e61d9-692e-4838-a84d-11c51911e3d4
# ╠═7c2f185f-e363-4a8e-8b52-80fef2622aa7
# ╠═a96202d4-6f52-40cc-a421-e81bb98c363b
# ╠═5907313d-43b1-4c67-84dd-ea0f5c1f3da8
# ╠═b153aba7-acee-4b0e-84e7-1e8aa6f5eea9
# ╠═adb0c3c3-97b9-45f1-ae42-e05539dbc427
# ╠═e668030b-8d70-4bd2-887c-1bafb6fe5928
# ╠═5decbbfe-402e-472a-9e22-402f7178d3d0
# ╠═6f5a6658-4128-4829-be58-4831b1496d0b
# ╠═18c20c8c-842a-4f03-b3a7-0d5442ae905e
# ╠═d91629d0-79e1-4ddd-9a28-3bc1a9948ff5
# ╠═c77e9bd1-5964-411f-831c-9b76b05ff640
# ╠═93fb8d81-c942-420d-ab91-8371a4af3062
# ╟─8208a2ee-8698-4a8c-81e2-3624abc4f7d3
# ╠═c40f2fe6-c8ac-4ace-bb54-148506bdb7a1
# ╠═5f74d11d-f384-4453-b268-5c81ee77cf65
# ╠═cf1ae6ed-d21a-4ca3-bfee-cbf0e1549667
# ╠═f3cc88a0-e5e0-4e75-8953-bd361937140b
# ╠═22f11800-1d96-46d4-9ac0-4ae817f1b4f1
# ╟─7ad09c29-c9cf-49c9-988f-83b7e4b05393
# ╠═f3e3edfa-c5c5-4c1a-805d-c46370298c62
# ╠═9e0cac6c-1121-4e0a-8750-7ad5736974c9
# ╠═5414db5c-5cc7-4bd5-8c19-aa12e43dfee2
# ╟─01e00375-4405-4ecb-abf2-8fcb51d6caa4
# ╠═d7ff540f-4b3c-4f4e-a7ad-eb5487fd98d5
# ╠═18ee8e44-abd2-4b6e-a66f-5be2dcda2978
# ╠═6877d30c-7b37-4ec5-9fc7-d6b5fbe382bd
# ╟─9326271a-ce21-4254-ab26-a42f87d18bc5
# ╠═96004b6e-d0f7-4afa-8ee2-f61aa84af474
# ╠═b00ca9fe-70fa-4d24-808f-581965d76df6
# ╠═cedbf13f-be78-43d7-879a-63971f02c8f5
# ╠═f6ee94f3-a049-44a1-91ba-bb6daf3d0140
# ╠═be1bb1e0-52f5-4158-9625-aa9f900b3d02
# ╠═faeff098-044b-49bc-85a3-c0c655de80a6
# ╠═f7b6234a-1951-4111-9095-418e6a2a4d49
# ╟─c1d0f438-b1d0-44d3-8836-858fcb229935
# ╠═91d1967b-5fc1-42db-83f2-65858a04f748
# ╠═f6bb9860-73c8-4d45-9eb9-76bbf9e4674e
# ╠═dbc6f577-b2d1-4396-af18-e5066af805d1
# ╠═5a755ee8-4dde-42d0-af88-1d8ae231a887
# ╠═18a5a84c-c07f-487b-a671-bb7daf4f0ce3
# ╠═49272f94-62e9-4e91-8397-bc328b63f63d
# ╠═49c8f3c1-a043-44c3-9c01-b26c9a1e7f24
# ╠═4d30686d-0dc1-4d62-aa8a-1409587f2654
# ╠═706a89f9-2c14-4b54-819e-2d009e777507
# ╟─9a5d6d10-27d7-4cac-a950-6e5668955067
# ╟─e89faf5f-04a8-44c3-a941-381d41782d40
# ╟─00000000-0000-0000-0000-000000000001
# ╟─00000000-0000-0000-0000-000000000002