forked from huzecong/tranX
-
Notifications
You must be signed in to change notification settings - Fork 1
/
not_used.py
160 lines (160 loc) · 6.65 KB
/
not_used.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# def self_training(args):
# """Perform self-training
#
# First load decoding results on disjoint data
# also load pre-trained model and perform supervised
# training on both existing training data and the
# decoded results
# """
#
# print('load pre-trained model from [%s]' % args.load_model, file=sys.stderr)
# params = torch.load(args.load_model, map_location=lambda storage, loc: storage)
# vocab = params['vocab']
# transition_system = params['transition_system']
# saved_args = params['args']
# saved_state = params['state_dict']
#
# # transfer arguments
# saved_args.cuda = args.cuda
# saved_args.save_to = args.save_to
# saved_args.train_file = args.train_file
# saved_args.unlabeled_file = args.unlabeled_file
# saved_args.dev_file = args.dev_file
# saved_args.load_decode_results = args.load_decode_results
# args = saved_args
#
# update_args(args, arg_parser)
#
# model = Parser(saved_args, vocab, transition_system)
# model.load_state_dict(saved_state)
#
# if args.cuda: model = model.cuda()
# model.train()
# optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
#
# print('load unlabeled data [%s]' % args.unlabeled_file, file=sys.stderr)
# unlabeled_data = Dataset.from_bin_file(args.unlabeled_file)
#
# print('load decoding results of unlabeled data [%s]' % args.load_decode_results, file=sys.stderr)
# decode_results = pickle.load(open(args.load_decode_results))
#
# labeled_data = Dataset.from_bin_file(args.train_file)
# dev_set = Dataset.from_bin_file(args.dev_file)
#
# print('Num. examples in unlabeled data: %d' % len(unlabeled_data), file=sys.stderr)
# assert len(unlabeled_data) == len(decode_results)
# self_train_examples = []
# for example, hyps in zip(unlabeled_data, decode_results):
# if hyps:
# hyp = hyps[0]
# sampled_example = Example(idx='self_train-%s' % example.idx,
# src_sent=example.src_sent,
# tgt_code=hyp.code,
# tgt_actions=hyp.action_infos,
# tgt_ast=hyp.tree)
# self_train_examples.append(sampled_example)
# print('Num. self training examples: %d, Num. labeled examples: %d' % (len(self_train_examples), len(labeled_data)),
# file=sys.stderr)
#
# train_set = Dataset(examples=labeled_data.examples + self_train_examples)
#
# print('begin training, %d training examples, %d dev examples' % (len(train_set), len(dev_set)), file=sys.stderr)
# print('vocab: %s' % repr(vocab), file=sys.stderr)
#
# epoch = train_iter = 0
# report_loss = report_examples = 0.
# history_dev_scores = []
# num_trial = patience = 0
# while True:
# epoch += 1
# epoch_begin = time.time()
#
# for batch_examples in train_set.batch_iter(batch_size=args.batch_size, shuffle=True):
# batch_examples = [e for e in batch_examples if len(e.tgt_actions) <= args.decode_max_time_step]
#
# train_iter += 1
# optimizer.zero_grad()
#
# loss = -model.score(batch_examples)
# # print(loss.data)
# loss_val = torch.sum(loss).data[0]
# report_loss += loss_val
# report_examples += len(batch_examples)
# loss = torch.mean(loss)
#
# loss.backward()
#
# # clip gradient
# if args.clip_grad > 0.:
# grad_norm = torch.nn.utils.clip_grad_norm(model.parameters(), args.clip_grad)
#
# optimizer.step()
#
# if train_iter % args.log_every == 0:
# print('[Iter %d] encoder loss=%.5f' %
# (train_iter,
# report_loss / report_examples),
# file=sys.stderr)
#
# report_loss = report_examples = 0.
#
# print('[Epoch %d] epoch elapsed %ds' % (epoch, time.time() - epoch_begin), file=sys.stderr)
# # model_file = args.save_to + '.iter%d.bin' % train_iter
# # print('save model to [%s]' % model_file, file=sys.stderr)
# # model.save(model_file)
#
# # perform validation
# print('[Epoch %d] begin validation' % epoch, file=sys.stderr)
# eval_start = time.time()
# eval_results = evaluation.evaluate(dev_set.examples, model, args, verbose=True)
# dev_acc = eval_results['accuracy']
# print('[Epoch %d] code generation accuracy=%.5f took %ds' % (epoch, dev_acc, time.time() - eval_start), file=sys.stderr)
# is_better = history_dev_scores == [] or dev_acc > max(history_dev_scores)
# history_dev_scores.append(dev_acc)
#
# if is_better:
# patience = 0
# model_file = args.save_to + '.bin'
# print('save currently the best model ..', file=sys.stderr)
# print('save model to [%s]' % model_file, file=sys.stderr)
# model.save(model_file)
# # also save the optimizers' state
# torch.save(optimizer.state_dict(), args.save_to + '.optim.bin')
# elif epoch == args.max_epoch:
# print('reached max epoch, stop!', file=sys.stderr)
# exit(0)
# elif patience < args.patience:
# patience += 1
# print('hit patience %d' % patience, file=sys.stderr)
#
# if patience == args.patience:
# num_trial += 1
# print('hit #%d trial' % num_trial, file=sys.stderr)
# if num_trial == args.max_num_trial:
# print('early stop!', file=sys.stderr)
# exit(0)
#
# # decay lr, and restore from previously best checkpoint
# lr = optimizer.param_groups[0]['lr'] * args.lr_decay
# print('load previously best model and decay learning rate to %f' % lr, file=sys.stderr)
#
# # load model
# params = torch.load(args.save_to + '.bin', map_location=lambda storage, loc: storage)
# model.load_state_dict(params['state_dict'])
# if args.cuda: model = model.cuda()
#
# # load optimizers
# if args.reset_optimizer:
# print('reset optimizer', file=sys.stderr)
# optimizer = torch.optim.Adam(model.inference_model.parameters(), lr=lr)
# else:
# print('restore parameters of the optimizers', file=sys.stderr)
# optimizer.load_state_dict(torch.load(args.save_to + '.optim.bin'))
#
# # set new lr
# for param_group in optimizer.param_groups:
# param_group['lr'] = lr
#
# # reset patience
# patience = 0
#