-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathproject_team_famil.py
executable file
·38 lines (31 loc) · 1.2 KB
/
project_team_famil.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from utils import *
import numpy as np
from datetime import datetime
from dbs import *
def get_team_famil(p, contributors, contr_projs_win,
proj_contrs_count, win):
contributors = list(contributors)
team_size = len(contributors)
if team_size <= 1:
return 0
famil = np.zeros((len(contributors), len(contributors)))
cur_fam_no_decay = 0
for w in range(win):
for contr_count, i in enumerate(contributors[:-1]):
contr_count += 1
for j in contributors[contr_count:]:
#common_proj = set(contr_projs_win[w][i]).intersection(set(contr_projs_win[w][j]))
common_proj = np.intersect1d(contr_projs_win[w][i],
contr_projs_win[w][j])
person_inter = 0
# accumulate familiarity of each common project
for c in common_proj:
count = proj_contrs_count[c][w]
if count <= 1:
person_inter += 0
else:
#\sum_{r_s} \frac{1}{|r_s| - 1}
person_inter += 1.0 / (count - 1) # (0, 1] person_inter may > 1
# accmulate familiarity over time
famil[contributors.index(i)][contributors.index(j)] += person_inter
return 1.0 * sum(sum(famil)) / (team_size * (team_size - 1) / 2)