forked from rishizek/tensorflow-deeplab-v3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate.py
146 lines (115 loc) · 5.17 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
"""Evaluate a DeepLab v3 model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import sys
import tensorflow as tf
import deeplab_model
from utils import preprocessing
from utils import dataset_util
import numpy as np
import timeit
parser = argparse.ArgumentParser()
parser.add_argument('--image_data_dir', type=str, default='dataset/VOCdevkit/VOC2012/JPEGImages',
help='The directory containing the image data.')
parser.add_argument('--label_data_dir', type=str, default='dataset/VOCdevkit/VOC2012/SegmentationClassAug',
help='The directory containing the ground truth label data.')
parser.add_argument('--evaluation_data_list', type=str, default='./dataset/val.txt',
help='Path to the file listing the evaluation images.')
parser.add_argument('--model_dir', type=str, default='./model',
help="Base directory for the model. "
"Make sure 'model_checkpoint_path' given in 'checkpoint' file matches "
"with checkpoint name.")
parser.add_argument('--base_architecture', type=str, default='resnet_v2_101',
choices=['resnet_v2_50', 'resnet_v2_101'],
help='The architecture of base Resnet building block.')
parser.add_argument('--output_stride', type=int, default=16,
choices=[8, 16],
help='Output stride for DeepLab v3. Currently 8 or 16 is supported.')
_NUM_CLASSES = 21
def main(unused_argv):
# Using the Winograd non-fused algorithms provides a small performance boost.
os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'
examples = dataset_util.read_examples_list(FLAGS.evaluation_data_list)
image_files = [os.path.join(FLAGS.image_data_dir, filename) + '.jpg' for filename in examples]
label_files = [os.path.join(FLAGS.label_data_dir, filename) + '.png' for filename in examples]
features, labels = preprocessing.eval_input_fn(image_files, label_files)
predictions = deeplab_model.deeplabv3_model_fn(
features,
labels,
tf.estimator.ModeKeys.EVAL,
params={
'output_stride': FLAGS.output_stride,
'batch_size': 1, # Batch size must be 1 because the images' size may differ
'base_architecture': FLAGS.base_architecture,
'pre_trained_model': None,
'batch_norm_decay': None,
'num_classes': _NUM_CLASSES,
'freeze_batch_norm': True
}).predictions
# Manually load the latest checkpoint
saver = tf.train.Saver()
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(FLAGS.model_dir)
saver.restore(sess, ckpt.model_checkpoint_path)
# Loop through the batches and store predictions and labels
step = 1
sum_cm = np.zeros((_NUM_CLASSES, _NUM_CLASSES), dtype=np.int32)
start = timeit.default_timer()
while True:
try:
preds = sess.run(predictions)
sum_cm += preds['confusion_matrix']
if not step % 100:
stop = timeit.default_timer()
tf.logging.info("current step = {} ({:.3f} sec)".format(step, stop-start))
start = timeit.default_timer()
step += 1
except tf.errors.OutOfRangeError:
break
def compute_mean_iou(total_cm):
"""Compute the mean intersection-over-union via the confusion matrix."""
sum_over_row = np.sum(total_cm, axis=0).astype(float)
sum_over_col = np.sum(total_cm, axis=1).astype(float)
cm_diag = np.diagonal(total_cm).astype(float)
denominator = sum_over_row + sum_over_col - cm_diag
# The mean is only computed over classes that appear in the
# label or prediction tensor. If the denominator is 0, we need to
# ignore the class.
num_valid_entries = np.sum((denominator != 0).astype(float))
# If the value of the denominator is 0, set it to 1 to avoid
# zero division.
denominator = np.where(
denominator > 0,
denominator,
np.ones_like(denominator))
ious = cm_diag / denominator
print('Intersection over Union for each class:')
for i, iou in enumerate(ious):
print(' class {}: {:.4f}'.format(i, iou))
# If the number of valid entries is 0 (no classes) we return 0.
m_iou = np.where(
num_valid_entries > 0,
np.sum(ious) / num_valid_entries,
0)
m_iou = float(m_iou)
print('mean Intersection over Union: {:.4f}'.format(float(m_iou)))
def compute_accuracy(total_cm):
"""Compute the accuracy via the confusion matrix."""
denominator = total_cm.sum().astype(float)
cm_diag_sum = np.diagonal(total_cm).sum().astype(float)
# If the number of valid entries is 0 (no classes) we return 0.
accuracy = np.where(
denominator > 0,
cm_diag_sum / denominator,
0)
accuracy = float(accuracy)
print('Pixel Accuracy: {:.4f}'.format(float(accuracy)))
compute_mean_iou(sum_cm)
compute_accuracy(sum_cm)
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)