-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.automator.yaml
102 lines (87 loc) · 3.81 KB
/
config.automator.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
###############################################################################
# Len Taing 2019 (TGBTG)
###############################################################################
# Automator configuration file
###############################################################################
# Give the new instance a unique name, e.g. the wes run name
# NOTE: "wes-auto" will automatically be prepended to this string
instance_name: "test1"
# Define the number of cores for the wes instance
# Options- 32 (default), 64, 96
cores: 32
# Define the disk size to use in GB, default 500
# the name of the persistent disk will be: "wes_auto_{instance_name}_disk"
disk_size: 500
# Path to sentieon binary
# Uncomment and define the sentieon path to use--otherwise
# sentieon-genomics-202010.01 is used by default
#sentieon_path: "/home/taing/sentieon/sentieon-genomics-202010.01/bin/"
#DEFINE the path to the google bucket path for the run
google_bucket_path: gs://mybucket/
# Uncomment the following and define the specific wes commit string to use
# wes_commit: "develop"
#Uncomment the following and define the specific wes GCP image to use
#NOTE: IF a specific GCP image is not set via config['image'], then
#the default behavior is to get the latest wes image
image: wes-ver2-26a
#Define the wes reference snapshot to use, default wes-ref-ver1-0
wes_ref_snapshot: 'wes-human-ref-ver1-6a'
# SOMATIC CALLER to use, options are {tnsnv, tnhaplotyper2, tnscope}
# tnscope is the default EVEN if the somatic_caller param is NOT defined
somatic_caller: tnscope
# CIMAC center: choices are {'mocha', 'mda', 'broad' (default)}
cimac_center: 'broad'
# Trim soft clip reads when calling somatic variants? False (default)
# NOT available for tnsnv
trim_soft_clip: False
# tumor_only - IF the normal sample is NOT available, then set this flag to
# be True by uncommenting the line below.
# Also make sure that the normal samples in the metasheet are empty.
#
# Default: tumor_only: False
tumor_only: False
# DEFINE the samples- each sample should have a name, e.g. SAMPLE1
# and a Google bucket path to the input file,
# e.g. gs://mybucket/data/sample1.fastq.gz
# VALID INPUTS: fastq, fastq.gz
# NOTE: for PAIRED-END fastq/fastq.gz, give both pairs to the sample:
# SAMPLE_1_PE:
# - gs://mybucket/data/sample1_pair1.fastq
# - gs://mybucket/data/sample1_pair2.fastq
samples:
mocha2-Run1-pt1-Normal:
- gs://mybucket/data/R1-1-N_HHTFLDSXX_R1.fastq.gz
- gs://mybucket/data/R1-1-N_HHTFLDSXX_R2.fastq.gz
mocha2-Run1-pt1-FF-Tumor:
- gs://mybucket/data/R1-1-F_HHTFLDSXX_R1.fastq.gz
- gs://mybucket/data/R1-1-F_HHTFLDSXX_R2.fastq.gz
mocha2-Run1-pt1-FFPE-Tumor:
- gs://mybucket/data/R1-1-FP_HHTFLDSXX_R1.fastq.gz
- gs://mybucket/data/R1-1-FP_HHTFLDSXX_R2.fastq.gz
# metahseet- Group the samples into Tumor/Normal "runs"
# each run should have a name, e.g. run_1:
# then under each run, define a tumor and a normal sample
# EXAMPLE:
# metasheet:
# run_1:
# tumor: SAMPLE_Tumor
# normal: SAMPLE_normal
metasheet:
mocha2-Run1-pt1-FF_run:
normal: mocha2-Run1-pt1-Normal
tumor: mocha2-Run1-pt1-FF-Tumor
mocha2-Run1-pt1-FFPE_run:
normal: mocha2-Run1-pt1-Normal
tumor: mocha2-Run1-pt1-FFPE-Tumor
# (Optional) Define any RNA-seq expression data associated with the TUMOR
# samples only. Currently, only expression results from Salmon are supported.
# The sample names in this section must match the same names used in the
# previous section.
# BOTH bam and expression files are required
#rna:
# mocha2-Run1-pt1-FF-Tumor:
# bam_file: gs://mybucket/data/mocha2-Run1-pt1-FF-Tumor.sorted.bam
# expression_file: gs://mybucket/data/mocha2-Run1-pt1-FF-Tumor.quant.sf
# mocha2-Run1-pt1-FFPE-Tumor:
# bam_file: gs://mybucket/data/mocha2-Run1-pt1-FFPE-Tumor.sorted.bam
# expression_file: gs://mybucket/data/mocha2-Run1-pt1-FFPE-Tumor.quant.sf