-
Notifications
You must be signed in to change notification settings - Fork 11
/
solver.py
422 lines (341 loc) · 15.9 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri May 1 15:38:05 2020
@author: rfablet
"""
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class CorrelateNoise(torch.nn.Module):
def __init__(self, shape_data, dim_cn):
super(CorrelateNoise, self).__init__()
self.conv1 = torch.nn.Conv2d(shape_data, dim_cn, (3, 3), padding=1, bias=False)
self.conv2 = torch.nn.Conv2d(dim_cn, 2 * dim_cn, (3, 3), padding=1, bias=False)
self.conv3 = torch.nn.Conv2d(2 * dim_cn, shape_data, (3, 3), padding=1, bias=False)
def forward(self, w):
w = self.conv1(F.relu(w)).to(device)
w = self.conv2(F.relu(w)).to(device)
w = self.conv3(w).to(device)
return w
class RegularizeVariance(torch.nn.Module):
def __init__(self, shape_data, dim_rv):
super(RegularizeVariance, self).__init__()
self.conv1 = torch.nn.Conv2d(shape_data, dim_rv, (3, 3), padding=1, bias=False)
self.conv2 = torch.nn.Conv2d(dim_rv, 2 * dim_rv, (3, 3), padding=1, bias=False)
self.conv3 = torch.nn.Conv2d(2 * dim_rv, shape_data, (3, 3), padding=1, bias=False)
def forward(self, v):
v = self.conv1(F.relu(v)).to(device)
v = self.conv2(F.relu(v)).to(device)
v = self.conv3(v).to(device)
return v
class ConvLSTM2d(torch.nn.Module):
def __init__(self, input_size, hidden_size, kernel_size = 3, stochastic=False):
super(ConvLSTM2d, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.kernel_size = kernel_size
self.padding = int((kernel_size - 1) / 2)
self.Gates = torch.nn.Conv2d(input_size + hidden_size, 4 * hidden_size, kernel_size = self.kernel_size, stride = 1, padding = self.padding)
self.stochastic = stochastic
#self.correlate_noise = CorrelateNoise(input_size, 10)
#self.regularize_variance = RegularizeVariance(input_size, 10)
def forward(self, input_, prev_state):
# get batch and spatial sizes
batch_size = input_.shape[0]
spatial_size = input_.shape[2:]
"""
if self.stochastic == True:
z = torch.randn(input_.shape).to(device)
z = self.correlate_noise(z)
z = (z-torch.mean(z))/torch.std(z)
#z = torch.mul(self.regularize_variance(z),self.correlate_noise(z))
"""
# generate empty prev_state, if None is provided
if prev_state is None:
state_size = [batch_size, self.hidden_size] + list(spatial_size)
prev_state = (
torch.autograd.Variable(torch.zeros(state_size)).to(device),
torch.autograd.Variable(torch.zeros(state_size)).to(device)
)
# prev_state has two components
prev_hidden, prev_cell = prev_state
# data size is [batch, channel, height, width]
stacked_inputs = torch.cat((input_, prev_hidden), 1)
"""
if self.stochastic == False:
stacked_inputs = torch.cat((input_, prev_hidden), 1)
else:
stacked_inputs = torch.cat((torch.add(input_,z), prev_hidden), 1)
"""
gates = self.Gates(stacked_inputs)
# chunk across channel dimension: split it to 4 samples at dimension 1
in_gate, remember_gate, out_gate, cell_gate = gates.chunk(4, 1)
# apply sigmoid non linearity
in_gate = torch.sigmoid(in_gate)
remember_gate = torch.sigmoid(remember_gate)
out_gate = torch.sigmoid(out_gate)
# apply tanh non linearity
cell_gate = torch.tanh(cell_gate)
# compute current cell and hidden state
cell = (remember_gate * prev_cell) + (in_gate * cell_gate)
hidden = out_gate * torch.tanh(cell)
return hidden, cell
class ConvLSTM1d(torch.nn.Module):
def __init__(self, input_size, hidden_size, kernel_size = 3):
super(ConvLSTM1d, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.kernel_size = kernel_size
self.padding = int((kernel_size - 1) / 2)
self.Gates = torch.nn.Conv1d(input_size + hidden_size, 4 * hidden_size, kernel_size = self.kernel_size, stride = 1, padding = self.padding)
def forward(self, input_, prev_state):
# get batch and spatial sizes
batch_size = input_.shape[0]
spatial_size = input_.shape[2:]
# generate empty prev_state, if None is provided
if prev_state is None:
state_size = [batch_size, self.hidden_size] + list(spatial_size)
prev_state = (
torch.autograd.Variable(torch.zeros(state_size)).to(device),
torch.autograd.Variable(torch.zeros(state_size)).to(device)
)
# prev_state has two components
prev_hidden, prev_cell = prev_state
# data size is [batch, channel, height, width]
stacked_inputs = torch.cat((input_, prev_hidden), 1)
gates = self.Gates(stacked_inputs)
# chunk across channel dimension: split it to 4 samples at dimension 1
in_gate, remember_gate, out_gate, cell_gate = gates.chunk(4, 1)
# apply sigmoid non linearity
in_gate = torch.sigmoid(in_gate)
remember_gate = torch.sigmoid(remember_gate)
out_gate = torch.sigmoid(out_gate)
# apply tanh non linearity
cell_gate = torch.tanh(cell_gate)
# compute current cell and hidden state
cell = (remember_gate * prev_cell) + (in_gate * cell_gate)
hidden = out_gate * torch.tanh(cell)
return hidden, cell
def compute_WeightedLoss(x2,w):
# fix normalizing factor ( Sum w = 1 != w~ bool index)
if len(list(w.size()))>0:
x2_msk = (x2 * w[None, :, None, None])[:, w>0, ...]
else:
x2_msk = x2[:, w==1, ...]
x2_num = ~x2_msk.isnan() & ~x2_msk.isinf()
if x2_num.sum() == 0:
return torch.scalar_tensor(0., device=x2_num.device)
# loss2 = x2_msk[x2_num].sum()
loss2 = F.mse_loss(x2_msk[x2_num], torch.zeros_like(x2_msk[x2_num]))
return loss2
def compute_spatio_temp_weighted_loss(x2, w):
x2_w = (x2 * w[None, ...])
non_zeros = (torch.ones_like(x2) * w[None, ...]) == 0.
x2_num = ~x2_w.isnan() & ~x2_w.isinf() & ~non_zeros
if x2_num.sum() == 0:
return torch.scalar_tensor(0., device=x2_num.device)
loss = F.mse_loss(x2_w[x2_num], torch.zeros_like(x2_w[x2_num]))
return loss
# Modules for the definition of the norms for
# the observation and prior model
class Model_WeightedL2Norm(torch.nn.Module):
def __init__(self):
super(Model_WeightedL2Norm, self).__init__()
def forward(self,x,w,eps=0.):
loss_ = torch.nansum( x**2 , dim = 3)
loss_ = torch.nansum( loss_ , dim = 2)
loss_ = torch.nansum( loss_ , dim = 0)
loss_ = torch.nansum( loss_ * w )
loss_ = loss_ / (torch.sum(~torch.isnan(x)) / x.shape[1] )
return loss_
class Model_WeightedL1Norm(torch.nn.Module):
def __init__(self):
super(Model_WeightedL1Norm, self).__init__()
def forward(self,x,w,eps):
loss_ = torch.nansum( torch.sqrt( eps**2 + x**2 ) , dim = 3)
loss_ = torch.nansum( loss_ , dim = 2)
loss_ = torch.nansum( loss_ , dim = 0)
loss_ = torch.nansum( loss_ * w )
loss_ = loss_ / (torch.sum(~torch.isnan(x)) / x.shape[1] )
return loss_
class Model_WeightedLorenzNorm(torch.nn.Module):
def __init__(self):
super(Model_WeightedLorenzNorm, self).__init__()
def forward(self,x,w,eps):
loss_ = torch.nansum( torch.log( 1. + eps**2 * x**2 ) , dim = 3)
loss_ = torch.nansum( loss_ , dim = 2)
loss_ = torch.nansum( loss_ , dim = 0)
loss_ = torch.nansum( loss_ * w )
loss_ = loss_ / (torch.sum(~torch.isnan(x)) / x.shape[1] )
return loss_
class Model_WeightedGMcLNorm(torch.nn.Module):
def __init__(self):
super(Model_WeightedL1Norm, self).__init__()
def forward(self,x,w,eps):
loss_ = torch.nansum( 1.0 - torch.exp( - eps**2 * x**2 ) , dim = 3)
loss_ = torch.nansum( loss_ , dim = 2)
loss_ = torch.nansum( loss_ , dim = 0)
loss_ = torch.nansum( loss_ * w )
loss_ = loss_ / (torch.sum(~torch.isnan(x)) / x.shape[1] )
return loss_
def compute_WeightedL2Norm1D(x2,w):
loss_ = torch.nansum(x2**2 , dim = 2)
loss_ = torch.nansum( loss_ , dim = 0)
loss_ = torch.nansum( loss_ * w )
loss_ = loss_ / (torch.sum(~torch.isnan(x2)) / x2.shape[1] )
return loss_
# Gradient-based minimization using a LSTM using a (sub)gradient as inputs
class model_GradUpdateLSTM(torch.nn.Module):
def __init__(self,ShapeData,periodicBnd=False,DimLSTM=0,rateDropout=0.,stochastic=False):
super(model_GradUpdateLSTM, self).__init__()
with torch.no_grad():
self.shape = ShapeData
if DimLSTM == 0 :
self.dim_state = 5*self.shape[0]
else :
self.dim_state = DimLSTM
self.PeriodicBnd = periodicBnd
if( (self.PeriodicBnd == True) & (len(self.shape) == 2) ):
print('No periodic boundary available for FxTime (eg, L63) tensors. Forced to False')
self.PeriodicBnd = False
self.convLayer = self._make_ConvGrad()
K = torch.Tensor([0.1]).view(1,1,1,1)
self.convLayer.weight = torch.nn.Parameter(K)
self.dropout = torch.nn.Dropout(rateDropout)
self.stochastic=stochastic
if len(self.shape) == 2: ## 1D Data
self.lstm = ConvLSTM1d(self.shape[0],self.dim_state,3)
elif len(self.shape) == 3: ## 2D Data
self.lstm = ConvLSTM2d(self.shape[0],self.dim_state,3,stochastic=self.stochastic)
def _make_ConvGrad(self):
layers = []
if len(self.shape) == 2: ## 1D Data
layers.append(torch.nn.Conv1d(self.dim_state, self.shape[0], 1, padding=0,bias=False))
elif len(self.shape) == 3: ## 2D Data
layers.append(torch.nn.Conv2d(self.dim_state, self.shape[0], (1,1), padding=0,bias=False))
return torch.nn.Sequential(*layers)
def _make_LSTMGrad(self):
layers = []
if len(self.shape) == 2: ## 1D Data
layers.append(ConvLSTM1d(self.shape[0],self.dim_state,3))
elif len(self.shape) == 3: ## 2D Data
layers.append(ConvLSTM2d(self.shape[0],self.dim_state,3,stochastic=self.stochastic))
return torch.nn.Sequential(*layers)
def forward(self,hidden,cell,grad,gradnorm=1.0):
# compute gradient
grad = grad / gradnorm
grad = self.dropout( grad )
if self.PeriodicBnd == True :
dB = 7
#
grad_ = torch.cat((grad[:,:,grad.size(2)-dB:,:],grad,grad[:,:,0:dB,:]),dim=2)
if hidden is None:
hidden_,cell_ = self.lstm(grad_,None)
else:
hidden_ = torch.cat((hidden[:,:,grad.size(2)-dB:,:],hidden,hidden[:,:,0:dB,:]),dim=2)
cell_ = torch.cat((cell[:,:,grad.size(2)-dB:,:],cell,cell[:,:,0:dB,:]),dim=2)
hidden_,cell_ = self.lstm(grad_,[hidden_,cell_])
hidden = hidden_[:,:,dB:grad.size(2)+dB,:]
cell = cell_[:,:,dB:grad.size(2)+dB,:]
else:
if hidden is None:
hidden,cell = self.lstm(grad,None)
else:
hidden,cell = self.lstm(grad,[hidden,cell])
grad = self.dropout( hidden )
grad = self.convLayer( grad )
return grad,hidden,cell
# New module for the definition/computation of the variational cost
class Model_Var_Cost(nn.Module):
def __init__(self ,m_NormObs, m_NormPhi, ShapeData,dim_obs=1,dim_obs_channel=0,dim_state=0):
super(Model_Var_Cost, self).__init__()
self.dim_obs_channel = dim_obs_channel
self.dim_obs = dim_obs
if dim_state > 0 :
self.dim_state = dim_state
else:
self.dim_state = ShapeData[0]
# parameters for variational cost
self.alphaObs = torch.nn.Parameter(torch.Tensor(1. * np.ones((self.dim_obs,1))))
self.alphaReg = torch.nn.Parameter(torch.Tensor([1.]))
if self.dim_obs_channel[0] == 0 :
self.WObs = torch.nn.Parameter(torch.Tensor(np.ones((self.dim_obs,ShapeData[0]))))
self.dim_obs_channel = ShapeData[0] * np.ones((self.dim_obs,))
else:
self.WObs = torch.nn.Parameter(torch.Tensor(np.ones((self.dim_obs,np.max(self.dim_obs_channel)))))
self.WReg = torch.nn.Parameter(torch.Tensor(np.ones(self.dim_state,)))
self.epsObs = torch.nn.Parameter(0.1 * torch.Tensor(np.ones((self.dim_obs,))))
self.epsReg = torch.nn.Parameter(torch.Tensor([0.1]))
self.normObs = m_NormObs
self.normPrior = m_NormPhi
def forward(self, dx, dy):
loss = self.alphaReg**2 * self.normPrior(dx,self.WReg**2,self.epsReg)
if self.dim_obs == 1 :
loss += self.alphaObs[0]**2 * self.normObs(dy,self.WObs[0,:]**2,self.epsObs[0])
else:
for kk in range(0,self.dim_obs):
loss += (
self.alphaObs[kk]**2
* self.normObs(
dy[kk],
self.WObs[kk,0:dy[kk].size(1)]**2,
self.epsObs[kk]
)
)
return loss
# 4DVarNN Solver class using automatic differentiation for the computation of gradient of the variational cost
# input modules: operator phi_r, gradient-based update model m_Grad
# modules for the definition of the norm of the observation and prior terms given as input parameters
# (default norm (None) refers to the L2 norm)
# updated inner modles to account for the variational model module
class Solver_Grad_4DVarNN(nn.Module):
NORMS = {
'l1': Model_WeightedL1Norm,
'l2': Model_WeightedL2Norm,
}
def __init__(self ,phi_r,mod_H, m_Grad, m_NormObs, m_NormPhi, shape_data,n_iter_grad, stochastic=False):
super(Solver_Grad_4DVarNN, self).__init__()
self.phi_r = phi_r
if m_NormObs == None:
m_NormObs = Model_WeightedL2Norm()
else:
m_NormObs = self.NORMS[m_NormObs]()
if m_NormPhi == None:
m_NormPhi = Model_WeightedL2Norm()
else:
m_NormPhi = self.NORMS[m_NormPhi]()
self.shape_data = shape_data
self.model_H = mod_H
self.model_Grad = m_Grad
self.model_VarCost = Model_Var_Cost(m_NormObs, m_NormPhi, shape_data, mod_H.dim_obs, mod_H.dim_obs_channel)
self.stochastic = stochastic
with torch.no_grad():
self.n_grad = int(n_iter_grad)
def forward(self, x, yobs, mask, *internal_state):
return self.solve(x, yobs, mask, *internal_state)
def solve(self, x_0, obs, mask, hidden=None, cell=None, normgrad_=0.):
x_k = torch.mul(x_0,1.)
x_k_plus_1 = None
for _ in range(self.n_grad):
x_k_plus_1, hidden, cell, normgrad_ = self.solver_step(x_k, obs, mask,hidden, cell, normgrad_)
x_k = torch.mul(x_k_plus_1,1.)
return x_k_plus_1, hidden, cell, normgrad_
def solver_step(self, x_k, obs, mask, hidden, cell,normgrad = 0.):
_, var_cost_grad= self.var_cost(x_k, obs, mask)
if normgrad == 0. :
normgrad_= torch.sqrt( torch.mean( var_cost_grad**2 + 0.))
else:
normgrad_= normgrad
grad, hidden, cell = self.model_Grad(hidden, cell, var_cost_grad, normgrad_)
grad *= 1./ self.n_grad
x_k_plus_1 = x_k - grad
return x_k_plus_1, hidden, cell, normgrad_
def var_cost(self , x, yobs, mask):
dy = self.model_H(x,yobs,mask)
dx = x - self.phi_r(x)
loss = self.model_VarCost( dx , dy )
var_cost_grad = torch.autograd.grad(loss, x, create_graph=True)[0]
return loss, var_cost_grad