diff --git a/src/transformers/models/robin/__init__.py b/src/transformers/models/robin/__init__.py new file mode 100644 index 00000000000000..46f06b1991afe7 --- /dev/null +++ b/src/transformers/models/robin/__init__.py @@ -0,0 +1,80 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available +from ...utils import OptionalDependencyNotAvailable + + +_import_structure = {"configuration_gpt_neox": ["GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXConfig"]} + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_gpt_neox_fast"] = ["GPTNeoXTokenizerFast"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_gpt_neox"] = [ + "GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST", + "GPTNeoXForCausalLM", + "GPTNeoXForQuestionAnswering", + "GPTNeoXForSequenceClassification", + "GPTNeoXForTokenClassification", + "GPTNeoXLayer", + "GPTNeoXModel", + "GPTNeoXPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_gpt_neox import ( + GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, + GPTNeoXForCausalLM, + GPTNeoXForQuestionAnswering, + GPTNeoXForSequenceClassification, + GPTNeoXForTokenClassification, + GPTNeoXLayer, + GPTNeoXModel, + GPTNeoXPreTrainedModel, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/src/transformers/models/robin/configuration_gpt_neox.py b/src/transformers/models/robin/configuration_gpt_neox.py new file mode 100644 index 00000000000000..657f143f216675 --- /dev/null +++ b/src/transformers/models/robin/configuration_gpt_neox.py @@ -0,0 +1,176 @@ +# coding=utf-8 +# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" GPTNeoX model configuration""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + +GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP = { + "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json", + # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox +} + + +class GPTNeoXConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`GPTNeoXModel`]. It is used to instantiate an + GPTNeoX model according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of the GPTNeoX + [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 50432): + Vocabulary size of the GPTNeoX model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`GPTNeoXModel`]. + hidden_size (`int`, *optional*, defaults to 6144): + Dimension of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 44): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 64): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 24576): + Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` are supported. + rotary_pct (`float`, *optional*, defaults to 0.25): + percentage of hidden dimensions to allocate to rotary embeddings + rotary_emb_base (`int`, *optional*, defaults to 10000) + base for computing rotary embeddings frequency + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio probability of the attention score. + hidden_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio of (1) the word embeddings, (2) the post-attention hidden states, and (3) the post-mlp + hidden states. + classifier_dropout (`float`, *optional*, defaults to 0.1): + Argument used when doing token classification, used in the model [`GPTNeoXForTokenClassification`]. + + The dropout ratio for the hidden layer. + max_position_embeddings (`int`, *optional*, defaults to 2048): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + initializer_range (`float`, *optional*, defaults to 1e-5): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + use_parallel_residual (`bool`, *optional*, defaults to `True`): + Whether to use a "parallel" formulation in each Transformer layer, which can provide a slight training + speedup at large scales (e.g. 20B). + rope_scaling (`Dict`, *optional*): + Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling + strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format + is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update + `max_position_embeddings` to the expected new maximum. See the following thread for more information on how + these scaling strategies behave: + https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an + experimental feature, subject to breaking API changes in future versions. + + Example: + + ```python + >>> from transformers import GPTNeoXConfig, GPTNeoXModel + + >>> # Initializing a GPTNeoX gpt-neox-20b style configuration + >>> configuration = GPTNeoXConfig() + + >>> # Initializing a model (with random weights) from the gpt-neox-20b style configuration + >>> model = GPTNeoXModel(configuration) # doctest: +SKIP + + >>> # Accessing the model configuration + >>> configuration = model.config # doctest: +SKIP + ```""" + model_type = "gpt_neox" + + def __init__( + self, + vocab_size=50432, + hidden_size=6144, + num_hidden_layers=44, + num_attention_heads=64, + intermediate_size=24576, + hidden_act="gelu", + rotary_pct=0.25, + rotary_emb_base=10000, + attention_dropout=0.0, + hidden_dropout=0.0, + classifier_dropout=0.1, + max_position_embeddings=2048, + initializer_range=0.02, + layer_norm_eps=1e-5, + use_cache=True, + bos_token_id=0, + eos_token_id=2, + tie_word_embeddings=False, + use_parallel_residual=True, + rope_scaling=None, + **kwargs, + ): + super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.intermediate_size = intermediate_size + self.hidden_act = hidden_act + self.rotary_pct = rotary_pct + self.rotary_emb_base = rotary_emb_base + self.attention_dropout = attention_dropout + self.hidden_dropout = hidden_dropout + self.classifier_dropout = classifier_dropout + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.use_cache = use_cache + self.tie_word_embeddings = tie_word_embeddings + self.use_parallel_residual = use_parallel_residual + self.rope_scaling = rope_scaling + self._rope_scaling_validation() + + if self.hidden_size % self.num_attention_heads != 0: + raise ValueError( + "The hidden size is not divisble by the number of attention heads! Make sure to update them!" + ) + + # Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation + def _rope_scaling_validation(self): + """ + Validate the `rope_scaling` configuration. + """ + if self.rope_scaling is None: + return + + if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: + raise ValueError( + "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " + f"got {self.rope_scaling}" + ) + rope_scaling_type = self.rope_scaling.get("type", None) + rope_scaling_factor = self.rope_scaling.get("factor", None) + if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: + raise ValueError( + f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" + ) + if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: + raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}") diff --git a/src/transformers/models/robin/image_prefix.py b/src/transformers/models/robin/image_prefix.py new file mode 100644 index 00000000000000..b398756c84ce91 --- /dev/null +++ b/src/transformers/models/robin/image_prefix.py @@ -0,0 +1,252 @@ +import torch +import torch.nn as nn +from torchtyping import TensorType, patch_typeguard +from einops import rearrange + +from typing import Callable, Union +import timm +import open_clip +from functools import partial + +# ----------------------------- Utils -------------------------------------- + +# clip.model.LayerNorm = ( +# nn.LayerNorm +# ) # we need to patch this for clip to work with deepspeed +# patch_typeguard() # needed for torchtyping typechecks to work + + +class Lambda(torch.nn.Module): + def __init__(self, fn: Callable): + super().__init__() + assert hasattr(fn, "__call__") + self.fn = fn + + def forward(self, x): + return self.fn(x) + + +# ------------------------- Image encoders ---------------------------------- + + +def nfresnet50( + device: Union[torch.device, str] = None, + pretrained: bool = True, + cache_path: str = None +) -> nn.Module: + """ + Loads nfresnet50 model, removing the pooling layer and replacing it with + an adaptive pooling layer. + """ + encoder = torch.nn.Sequential( + *list(timm.create_model( + "nf_resnet50", + pretrained=pretrained, + # checkpoint_path=cache_path + ).children())[:-1] + ) + pooling = torch.nn.AdaptiveAvgPool2d((1, 1)) + encoder = torch.nn.Sequential(encoder, pooling) + if device is not None: + encoder = encoder.to(device) + return encoder + + +def clip_encoder( + device: Union[torch.device, str] = None, + name: str = "clip", + pretrain: bool = False, + cache_path: str = None +) -> nn.Module: + """ + Loads clip's image encoder module, discarding the lm component. + + If the variant is a resnet model, we also remove the attention pooling. + """ + if name in ["clip", "ViT-B/32"]: + name, pretrained = "ViT-B-32", "openai" + elif name in ["clip_resnet", "RN50x4"]: + name, pretrained = "RN50x4", "openai" + elif name in ["clip_resnet_large", "RN50x16"]: + name, pretrained = "RN50x16", "openai" + elif "openclip" in name: + if "H" in name: + name, pretrained = "ViT-H-14", "laion2b_s32b_b79k" + elif "B" in name and "32" in name: + name, pretrained = "ViT-B-32", "laion2b_s34b_b79k" + else: + raise NotImplementedError(f"Encoder {name} not recognized") + else: + raise NotImplementedError(f"Encoder {name} not recognized") + + # TODO better internet connection + if pretrain: + encoder = open_clip.create_model( + name, + device=device, + precision="fp16" if "cuda" in str(device) else "fp32", + pretrained=pretrained, + cache_dir=cache_path + ).visual + else: + encoder = open_clip.create_model( + name, + device=device, + precision="fp16" if "cuda" in str(device) else "fp32", + # pretrained=pretrained, + cache_dir=cache_path + ).visual + + if "RN" in name: + # remove attention pooling + encoder.attnpool = Lambda( + partial(rearrange, pattern="b d h w -> b (h w) d") + ) # remove attn pooling, just use reshaped features + + if False and hasattr(encoder, "transformer"): # TODO when do we want to disable pooling? + def forward(self, x: torch.Tensor): + x = self.conv1(x) # shape = [*, width, grid, grid] + x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] + x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] + x = torch.cat( + [self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), + x], dim=1) # shape = [*, grid ** 2 + 1, width] + x = x + self.positional_embedding.to(x.dtype) + + ## a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in + # x = self.patch_dropout(x) + x = self.ln_pre(x) + + x = x.permute(1, 0, 2) # NLD -> LND + x = self.transformer(x) + x = self.ln_post(x) + x = x.permute(1, 0, 2) # LND -> NLD + return x + encoder.forward = partial(forward, encoder) + + + if device is not None: + encoder = encoder.to(device) + + return encoder + + +def get_image_encoder( + name: str, + device: Union[torch.device, str] = None, + pretrained: bool = False, + cache_path: str = None +) -> torch.nn.Module: + """ + Loads image encoder module + """ + if name == "nfresnet50": + encoder = nfresnet50(device=device, pretrained=pretrained, cache_path=cache_path) + elif "clip" in name: + encoder = clip_encoder(device=device, name=name, pretrain=pretrained, cache_path=cache_path) + else: + raise ValueError(f"image encoder {name} not recognized") + return encoder + + +# ------------------------- Image prefix ---------------------------------- + +# for models that are fixed to a specific sequence lengths (i.e clip models with no pooling), the sequence lengths are below +ENCODER_SEQ_LENS = { + "clip_resnet": 49, + "clip_resnet_large": 144, + "openclip-H": 257 +} + +ENCODER_OUT_DIMS = { + "nfresnet50": 2048, + "clip": 512, + "clip_resnet": 2560, + "clip_resnet_large": 3072, + "openclip-H": 1024, +} + + +class ImagePrefix(nn.Module): + + """ + Takes in a batch of images and returns a batch of embeddings of the + same dimensions as the LM's word embeddings. + + :param config: Neox args + :param out_dim: output dimension of the embedding + :param device: device to run the model on + """ + + def __init__( + self, + config, + out_dim: int = 2048, + device=None, + ): + super().__init__() + self.device = device or torch.device( + "cuda" if torch.cuda.is_available() else "cpu" + ) + self.config = config + self.encoder_type = config.encoder_name + + # get image encoder backbone + self.enc = get_image_encoder( + config.encoder_name, + # device=self.device, + pretrained=config.pretrained_img_encoder, + cache_path = config.load_clip + ) + self.encoder_out_dim = ENCODER_OUT_DIMS[ + self.encoder_type + ] # out dim for image encoder + + self.out_dim = out_dim # out dim for lm + + # get the output projection + proj_out_dim = ( + self.out_dim + ) + self.proj = nn.Linear(self.encoder_out_dim, proj_out_dim) + self.dropout = nn.Dropout(config.image_embed_dropout_prob) + self.use_layernorm = config.use_image_embed_layernorm + if self.use_layernorm: + self.ln = nn.LayerNorm(self.out_dim) + + def forward( + self, x: TensorType["b", "c", "h", "w"] + ) -> TensorType["b", "seq", "out_dim"]: + + # pass through image encoder + logits = self.enc(x) + + # remove trailing dimensions of size 1 + pass through linear + if logits.ndim == 4: + logits = rearrange(logits, "b d 1 1 -> b d") + elif logits.ndim == 3: + assert self.encoder_type in ENCODER_SEQ_LENS + else: + assert logits.ndim == 2 + + logits = self.proj(logits) + + # reshape to desired output shape + if ( + self.encoder_type not in ENCODER_SEQ_LENS + ): # don't need to reshape those with fixed seq lens / no pooling + logits = rearrange( + logits, "b (s d) -> b s d", d=self.out_dim, s=self.out_seq_len + ) + + # pass through dropout and layer norm + logits = self.dropout(logits) + + if self.use_layernorm: + logits = self.ln(logits) + + # Added for shape mismatch. + if logits.ndim == 2: + logits = logits.unsqueeze(1) + + return logits diff --git a/src/transformers/models/robin/modeling_gpt_neox.py b/src/transformers/models/robin/modeling_gpt_neox.py new file mode 100644 index 00000000000000..c298c87c3c6174 --- /dev/null +++ b/src/transformers/models/robin/modeling_gpt_neox.py @@ -0,0 +1,1192 @@ +# coding=utf-8 +# Copyright 2022 EleutherAI The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch GPTNeoX model.""" + +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...file_utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + replace_return_docstrings, +) +from ...modeling_outputs import ( + BaseModelOutputWithPast, + CausalLMOutputWithPast, + QuestionAnsweringModelOutput, + SequenceClassifierOutputWithPast, + TokenClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...utils import logging +from .configuration_gpt_neox import GPTNeoXConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "trl-internal-testing/tiny-random-GPTNeoXForCausalLM" +_REAL_CHECKPOINT_FOR_DOC = "EleutherAI/gpt-neox-20b" +_CONFIG_FOR_DOC = "GPTNeoXConfig" + +GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "EleutherAI/gpt-neox-20b", + # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox +] + + +class GPTNeoXPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = GPTNeoXConfig + base_model_prefix = "gpt_neox" + supports_gradient_checkpointing = True + _no_split_modules = ["GPTNeoXLayer"] + _skip_keys_device_placement = "past_key_values" + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + def _set_gradient_checkpointing(self, module, value=False): + if isinstance(module, GPTNeoXModel): + module.gradient_checkpointing = value + + +class GPTNeoXAttention(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.num_attention_heads = config.num_attention_heads + self.hidden_size = config.hidden_size + if self.hidden_size % self.num_attention_heads != 0: + raise ValueError( + "The hidden size is not divisble by the number of attention heads! Make sure to update them" + ) + self.head_size = self.hidden_size // self.num_attention_heads + self.rotary_ndims = int(self.head_size * config.rotary_pct) + self._init_bias(config.max_position_embeddings) + + self.register_buffer("masked_bias", torch.tensor(-1e9), persistent=False) + self._init_rope() + + self.register_buffer( + "norm_factor", + torch.sqrt(torch.tensor(self.head_size, dtype=torch.float32)).to(torch.get_default_dtype()), + persistent=False, + ) + self.query_key_value = nn.Linear(config.hidden_size, 3 * config.hidden_size) + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.attention_dropout = nn.Dropout(config.attention_dropout) + + def _init_bias(self, max_positions, device=None): + self.register_buffer( + "bias", + torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view( + 1, 1, max_positions, max_positions + ), + persistent=False, + ) + if device is not None: + self.bias = self.bias.to(device) + + def _init_rope(self): + if self.config.rope_scaling is None: + self.rotary_emb = GPTNeoXRotaryEmbedding( + self.rotary_ndims, self.config.max_position_embeddings, base=self.config.rotary_emb_base + ) + else: + scaling_type = self.config.rope_scaling["type"] + scaling_factor = self.config.rope_scaling["factor"] + if scaling_type == "linear": + self.rotary_emb = GPTNeoXLinearScalingRotaryEmbedding( + self.rotary_ndims, + self.config.max_position_embeddings, + base=self.config.rotary_emb_base, + scaling_factor=scaling_factor, + ) + elif scaling_type == "dynamic": + self.rotary_emb = GPTNeoXDynamicNTKScalingRotaryEmbedding( + self.rotary_ndims, + self.config.max_position_embeddings, + base=self.config.rotary_emb_base, + scaling_factor=scaling_factor, + ) + else: + raise ValueError(f"Unknown RoPE scaling type {scaling_type}") + + def forward( + self, + hidden_states: torch.FloatTensor, + attention_mask: torch.FloatTensor, + position_ids: torch.LongTensor, + head_mask: Optional[torch.FloatTensor] = None, + layer_past: Optional[Tuple[torch.Tensor]] = None, + use_cache: Optional[bool] = False, + output_attentions: Optional[bool] = False, + ): + has_layer_past = layer_past is not None + + # Compute QKV + # Attention heads [batch, seq_len, hidden_size] + # --> [batch, seq_len, (np * 3 * head_size)] + qkv = self.query_key_value(hidden_states) + + # [batch, seq_len, (num_heads * 3 * head_size)] + # --> [batch, seq_len, num_heads, 3 * head_size] + new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size) + qkv = qkv.view(*new_qkv_shape) + + # [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size] + query = qkv[..., : self.head_size].permute(0, 2, 1, 3) + key = qkv[..., self.head_size : 2 * self.head_size].permute(0, 2, 1, 3) + value = qkv[..., 2 * self.head_size :].permute(0, 2, 1, 3) + + # Compute rotary embeddings on rotary_ndims + query_rot = query[..., : self.rotary_ndims] + query_pass = query[..., self.rotary_ndims :] + key_rot = key[..., : self.rotary_ndims] + key_pass = key[..., self.rotary_ndims :] + + # Compute token offset for rotary embeddings (when decoding) + seq_len = key.shape[-2] + if has_layer_past: + seq_len += layer_past[0].shape[-2] + cos, sin = self.rotary_emb(value, seq_len=seq_len) + query, key = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids) + query = torch.cat((query, query_pass), dim=-1) + key = torch.cat((key, key_pass), dim=-1) + + # Cache QKV values + if has_layer_past: + past_key = layer_past[0] + past_value = layer_past[1] + key = torch.cat((past_key, key), dim=-2) + value = torch.cat((past_value, value), dim=-2) + present = (key, value) if use_cache else None + + # Compute attention + attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) + + # Reshape outputs + attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_size) + attn_output = self.dense(attn_output) + + outputs = (attn_output, present) + if output_attentions: + outputs += (attn_weights,) + + return outputs + + @classmethod + def _split_heads(cls, tensor, num_attention_heads, attn_head_size): + """ + Splits hidden dim into attn_head_size and num_attention_heads + """ + # tensor: [bs, seq_len, hidden_size] + new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size) + # -> [bs, seq_len, num_attention_heads, attn_head_size] + tensor = tensor.view(new_shape) + # -> [bs, num_attention_heads, seq_len, attn_head_size] + tensor = tensor.permute(0, 2, 1, 3) + return tensor + + @classmethod + def _merge_heads(cls, tensor, num_attention_heads, attn_head_size): + """ + Merges attn_head_size dim and num_attn_heads dim into hidden dim + """ + # tensor [bs, num_attention_heads, seq_len, attn_head_size] + tensor = tensor.permute(0, 2, 1, 3).contiguous() + # -> [bs, seq_len, num_attention_heads, attn_head_size] + tensor = tensor.view(tensor.size(0), tensor.size(1), num_attention_heads * attn_head_size) + # -> [bs, seq_len, hidden_size] + return tensor + + def _attn(self, query, key, value, attention_mask=None, head_mask=None): + # q, k, v: [bs, num_attention_heads, seq_len, attn_head_size] + # compute causal mask from causal mask buffer + batch_size, num_attention_heads, query_length, attn_head_size = query.size() + key_length = key.size(-2) + + # dynamically increase the causal mask with the key length, if needed. + if key_length > self.bias.shape[-1]: + self._init_bias(key_length, device=key.device) + causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length] + + query = query.view(batch_size * num_attention_heads, query_length, attn_head_size) + key = key.view(batch_size * num_attention_heads, key_length, attn_head_size) + attn_scores = torch.zeros( + batch_size * num_attention_heads, + query_length, + key_length, + dtype=query.dtype, + device=key.device, + ) + attn_scores = torch.baddbmm( + attn_scores, + query, + key.transpose(1, 2), + beta=1.0, + alpha=(torch.tensor(1.0, dtype=self.norm_factor.dtype, device=self.norm_factor.device) / self.norm_factor), + ) + attn_scores = attn_scores.view(batch_size, num_attention_heads, query_length, key_length) + + mask_value = torch.finfo(attn_scores.dtype).min + # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`. + # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device` + mask_value = torch.tensor(mask_value, dtype=attn_scores.dtype).to(attn_scores.device) + attn_scores = torch.where(causal_mask, attn_scores, mask_value) + + if attention_mask is not None: + # Apply the attention mask + attn_scores = attn_scores + attention_mask + + attn_weights = nn.functional.softmax(attn_scores, dim=-1) + attn_weights = attn_weights.to(value.dtype) + + # Mask heads if we want to + if head_mask is not None: + attn_weights = attn_weights * head_mask + + attn_weights = self.attention_dropout(attn_weights) + + attn_output = torch.matmul(attn_weights, value) + return attn_output, attn_weights + + +def attention_mask_func(attention_scores, ltor_mask): + attention_scores.masked_fill_(~ltor_mask, torch.finfo(attention_scores.dtype).min) + return attention_scores + + +class GPTNeoXRotaryEmbedding(torch.nn.Module): + def __init__(self, dim, max_position_embeddings, base=10000, device=None): + super().__init__() + + self.dim = dim + self.max_position_embeddings = max_position_embeddings + self.base = base + inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) + self.register_buffer("inv_freq", inv_freq) + + # Build here to make `torch.jit.trace` work. + self._set_cos_sin_cache(seq_len=max_position_embeddings, device=self.inv_freq.device) + + def _set_cos_sin_cache(self, seq_len, device): + self.max_seq_len_cached = seq_len + t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) + + freqs = torch.einsum("i,j->ij", t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.cos_cached = emb.cos()[None, None, :, :] + self.sin_cached = emb.sin()[None, None, :, :] + + def forward(self, x, seq_len=None): + # x: [bs, num_attention_heads, seq_len, head_size] + if seq_len > self.max_seq_len_cached: + self._set_cos_sin_cache(seq_len=seq_len, device=x.device) + return self.cos_cached[:seq_len, ...].to(x.device), self.sin_cached[:seq_len, ...].to(x.device) + + +class GPTNeoXLinearScalingRotaryEmbedding(GPTNeoXRotaryEmbedding): + """GPTNeoXRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" + + def __init__(self, dim, max_position_embeddings, base=10000, device=None, scaling_factor=1.0): + self.scaling_factor = scaling_factor + super().__init__(dim, max_position_embeddings, base, device) + + def _set_cos_sin_cache(self, seq_len, device): + self.max_seq_len_cached = seq_len + t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) + t = t / self.scaling_factor + + freqs = torch.einsum("i,j->ij", t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.cos_cached = emb.cos()[None, None, :, :] + self.sin_cached = emb.sin()[None, None, :, :] + + +class GPTNeoXDynamicNTKScalingRotaryEmbedding(GPTNeoXRotaryEmbedding): + """GPTNeoXRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" + + def __init__(self, dim, max_position_embeddings, base=10000, device=None, scaling_factor=1.0): + self.scaling_factor = scaling_factor + super().__init__(dim, max_position_embeddings, base, device) + + def _set_cos_sin_cache(self, seq_len, device): + self.max_seq_len_cached = seq_len + + if seq_len > self.max_position_embeddings: + base = self.base * ( + (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) + ) ** (self.dim / (self.dim - 2)) + inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) + self.register_buffer("inv_freq", inv_freq) + + t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) + + freqs = torch.einsum("i,j->ij", t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.cos_cached = emb.cos()[None, None, :, :] + self.sin_cached = emb.sin()[None, None, :, :] + + +def rotate_half(x): + """Rotates half the hidden dims of the input.""" + x1 = x[..., : x.shape[-1] // 2] + x2 = x[..., x.shape[-1] // 2 :] + return torch.cat((-x2, x1), dim=-1) + + +def apply_rotary_pos_emb(q, k, cos, sin, position_ids): + gather_indices = position_ids[:, None, :, None] # [bs, 1, seq_len, 1] + gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3]) + cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices) + sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices) + q_embed = (q * cos) + (rotate_half(q) * sin) + k_embed = (k * cos) + (rotate_half(k) * sin) + return q_embed, k_embed + + +class GPTNeoXMLP(nn.Module): + def __init__(self, config): + super().__init__() + self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size) + self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size) + self.act = ACT2FN[config.hidden_act] + + def forward(self, hidden_states): + hidden_states = self.dense_h_to_4h(hidden_states) + hidden_states = self.act(hidden_states) + hidden_states = self.dense_4h_to_h(hidden_states) + return hidden_states + + +class GPTNeoXLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.use_parallel_residual = config.use_parallel_residual + self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.post_attention_dropout = nn.Dropout(config.hidden_dropout) + self.post_mlp_dropout = nn.Dropout(config.hidden_dropout) + self.attention = GPTNeoXAttention(config) + self.mlp = GPTNeoXMLP(config) + + def forward( + self, + hidden_states: Optional[torch.FloatTensor], + attention_mask: Optional[torch.FloatTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = False, + layer_past: Optional[Tuple[torch.Tensor]] = None, + output_attentions: Optional[bool] = False, + ): + attention_layer_outputs = self.attention( + self.input_layernorm(hidden_states), + attention_mask=attention_mask, + position_ids=position_ids, + layer_past=layer_past, + head_mask=head_mask, + use_cache=use_cache, + output_attentions=output_attentions, + ) + attn_output = attention_layer_outputs[0] # output_attn: attn_output, present, (attn_weights) + attn_output = self.post_attention_dropout(attn_output) + outputs = attention_layer_outputs[1:] + + if self.use_parallel_residual: + # pseudocode: + # x = x + attn(ln1(x)) + mlp(ln2(x)) + mlp_output = self.mlp(self.post_attention_layernorm(hidden_states)) + mlp_output = self.post_mlp_dropout(mlp_output) + hidden_states = mlp_output + attn_output + hidden_states + else: + # pseudocode: + # x = x + attn(ln1(x)) + # x = x + mlp(ln2(x)) + attn_output = attn_output + hidden_states + mlp_output = self.mlp(self.post_attention_layernorm(attn_output)) + mlp_output = self.post_mlp_dropout(mlp_output) + hidden_states = mlp_output + attn_output + + if use_cache: + outputs = (hidden_states,) + outputs # hidden_states, present, (attn_weights) + else: + outputs = (hidden_states,) + outputs[1:] # hidden_states, (attn_weights) + + return outputs + + +GPT_NEOX_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use + it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`~GPTNeoXConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +GPT_NEOX_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert *input_ids* indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. +""" + + +from .image_prefix import ImagePrefix +class NEOX_ARGS: + def __init__(): + hidden_size = None + encoder_name = "openclip-H" + pretrained_img_encoder = True + load_clip = "/gpfs/alpine/csc499/proj-shared/magma/models/clip" + image_embed_dropout_prob = 0.1 + use_image_embed_layernorm = True + +@add_start_docstrings( + "The bare GPTNeoX Model transformer outputting raw hidden-states without any specific head on top.", + GPT_NEOX_START_DOCSTRING, +) +class GPTNeoXModel(GPTNeoXPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.config = config + + self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size) + + neox_args = NEOX_ARGS() + self.embed_in_img = self.image_prefix = ImagePrefix( + config = neox_args, + out_dim=neox_args.hidden_size, + ) + + self.emb_dropout = nn.Dropout(config.hidden_dropout) + self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) + self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + self.gradient_checkpointing = False + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embed_in + + def set_input_embeddings(self, value): + self.embed_in = value + + @add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + real_checkpoint=_REAL_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPast, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + input_ids_img: Optional[torch.LongTensor] = None, + position_ids_img: Optional[torch.LongTensor] = None, + inputs_embeds_img: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPast]: + r""" + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + use_cache = use_cache if use_cache is not None else self.config.use_cache + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if input_ids_img is not None and inputs_embeds_img is not None: + raise ValueError("You cannot specify both input_ids_img and inputs_embeds_img at the same time") + elif input_ids_img is not None: + input_shape_img = input_ids.size() + elif inputs_embeds_img is not None: + input_shape_img = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids_img or inputs_embeds_img") + + if input_shape != input_shape_img: + raise ValueError("You must have exactly one image per text prompt") + + batch_size, seq_length = input_shape + + if past_key_values is None: + past_length = 0 + past_key_values = tuple([None] * self.config.num_hidden_layers) + else: + past_length = past_key_values[0][0].size(-2) + + if position_ids is None: + device = input_ids.device if input_ids is not None else inputs_embeds.device + position_ids = torch.arange(past_length, seq_length + past_length, dtype=torch.long, device=device) + position_ids = position_ids.unsqueeze(0).view(-1, seq_length) + else: + position_ids = position_ids.view(-1, seq_length).long() + + if position_ids_img is None: + device = input_ids_img.device if input_ids_img is not None else inputs_embeds_img.device + position_ids_img = torch.arange(past_length, seq_length + past_length, dtype=torch.long, device=device) + position_ids_img = position_ids.unsqueeze(0).view(-1, seq_length) + else: + position_ids_img = position_ids_img.view(-1, seq_length).long() + + # Attention mask. + if attention_mask is not None: + assert batch_size > 0, "batch_size has to be defined and > 0" + attention_mask = attention_mask.view(batch_size, -1) + # We create a 3D attention mask from a 2D tensor mask. + # Sizes are [batch_size, 1, 1, to_seq_length] + # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] + # this attention mask is more simple than the triangular masking of causal attention + # used in OpenAI GPT, we just need to prepare the broadcast dimension here. + attention_mask = attention_mask[:, None, None, :] + + # Since attention_mask is 1.0 for positions we want to attend and 0.0 for + # masked positions, this operation will create a tensor which is 0.0 for + # positions we want to attend and the dtype's smallest value for masked positions. + # Since we are adding it to the raw scores before the softmax, this is + # effectively the same as removing these entirely. + attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility + attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + if inputs_embeds is None: + inputs_embeds = self.embed_in(input_ids) + + if inputs_embeds_img is None: + inputs_embeds_img = self.embed_in_img(input_ids_img) + + ### TODO stoped here + hidden_states = self.emb_dropout(inputs_embeds) + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + presents = () if use_cache else None + all_attentions = () if output_attentions else None + all_hidden_states = () if output_hidden_states else None + for i, (layer, layer_past) in enumerate(zip(self.layers, past_key_values)): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if self.gradient_checkpointing and self.training: + + def create_custom_forward(module): + def custom_forward(*inputs): + # None for layer_past + return module(*inputs, use_cache, None, output_attentions) + + return custom_forward + + outputs = torch.utils.checkpoint.checkpoint( + create_custom_forward(layer), + hidden_states, + attention_mask, + position_ids, + head_mask[i], + ) + else: + outputs = layer( + hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask[i], + layer_past=layer_past, + use_cache=use_cache, + output_attentions=output_attentions, + ) + hidden_states = outputs[0] + if use_cache is True: + presents = presents + (outputs[1],) + if output_attentions: + all_attentions = all_attentions + (outputs[2 if use_cache else 1],) + + hidden_states = self.final_layer_norm(hidden_states) + # Add last hidden state + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None) + + return BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=presents, + hidden_states=all_hidden_states, + attentions=all_attentions, + ) + + +@add_start_docstrings( + """GPTNeoX Model with a `language modeling` head on top for CLM fine-tuning.""", GPT_NEOX_START_DOCSTRING +) +class GPTNeoXForCausalLM(GPTNeoXPreTrainedModel): + _tied_weights_keys = ["embed_out.weight"] + + def __init__(self, config): + super().__init__(config) + + self.gpt_neox = GPTNeoXModel(config) + self.embed_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.embed_out + + def set_output_embeddings(self, new_embeddings): + self.embed_out = new_embeddings + + @add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + r""" + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape + `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape + `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are + only required when the model is used as a decoder in a Sequence to Sequence model. + + Contains pre-computed hidden-states (key and values in the self-attention blocks that can be used (see + `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in + `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are + ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, GPTNeoXForCausalLM, GPTNeoXConfig + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b") + >>> config = GPTNeoXConfig.from_pretrained("EleutherAI/gpt-neox-20b") + >>> config.is_decoder = True + >>> model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b", config=config) + + >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") + >>> outputs = model(**inputs) + + >>> prediction_logits = outputs.logits + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.gpt_neox( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + lm_logits = self.embed_out(hidden_states) + + lm_loss = None + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(lm_logits.device) + # we are doing next-token prediction; shift prediction scores and input ids by one + shift_logits = lm_logits[:, :-1, :].contiguous() + labels = labels[:, 1:].contiguous() + loss_fct = CrossEntropyLoss() + lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1)) + + if not return_dict: + output = (lm_logits,) + outputs[1:] + return ((lm_loss,) + output) if lm_loss is not None else output + + return CausalLMOutputWithPast( + loss=lm_loss, + logits=lm_logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs + ): + input_shape = input_ids.shape + + # cut decoder_input_ids if past is used + if past_key_values and past_key_values[0] is not None: + input_ids = input_ids[:, -1:] + + position_ids = kwargs.get("position_ids", None) + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -1].unsqueeze(-1) + + # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly + if attention_mask is None: + attention_mask = input_ids.new_ones(input_shape) + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and past_key_values is None: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + model_inputs.update( + { + "attention_mask": attention_mask, + "past_key_values": past_key_values, + "position_ids": position_ids, + } + ) + + return model_inputs + + def _reorder_cache(self, past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], + ) + return reordered_past + + +@add_start_docstrings( + """ + The GPTNeoX Model transformer with a sequence classification head on top (linear layer). + + [`GPTNeoXForSequenceClassification`] uses the last token in order to do the classification, as other causal models + (e.g. GPT-1) do. + + Since it does classification on the last token, it requires to know the position of the last token. If a + `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If + no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the + padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in + each row of the batch). + """, + GPT_NEOX_START_DOCSTRING, +) +class GPTNeoXForSequenceClassification(GPTNeoXPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.gpt_neox = GPTNeoXModel(config) + self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=SequenceClassifierOutputWithPast, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.gpt_neox( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = outputs[0] + logits = self.score(hidden_states) + + if input_ids is not None: + batch_size, sequence_length = input_ids.shape[:2] + else: + batch_size, sequence_length = inputs_embeds.shape[:2] + + if self.config.pad_token_id is None and batch_size != 1: + raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") + if self.config.pad_token_id is None: + sequence_lengths = -1 + else: + if input_ids is not None: + sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1).to( + logits.device + ) + else: + sequence_lengths = -1 + logger.warning( + f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " + "unexpected if using padding tokens in conjunction with `inputs_embeds.`" + ) + + pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] + + loss = None + if labels is not None: + labels = labels.to(logits.device) + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(pooled_logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(pooled_logits, labels) + if not return_dict: + output = (pooled_logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutputWithPast( + loss=loss, + logits=pooled_logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +class GPTNeoXForTokenClassification(GPTNeoXPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.gpt_neox = GPTNeoXModel(config) + self.dropout = nn.Dropout(config.classifier_dropout) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint="LarsJonasson/pythia-410m-deduped-sft-swedish", + output_type=TokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_loss=0.25, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, TokenClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.gpt_neox( + input_ids, + past_key_values=past_key_values, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + hidden_states = self.dropout(hidden_states) + logits = self.classifier(hidden_states) + + loss = None + if labels is not None: + labels = labels.to(logits.device) + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + The GPT-NeoX Model transformer with a span classification head on top for extractive question-answering tasks like + SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + GPT_NEOX_START_DOCSTRING, +) +class GPTNeoXForQuestionAnswering(GPTNeoXPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.gpt_neox = GPTNeoXModel(config) + self.qa_outputs = nn.Linear(config.hidden_size, 2) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=QuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + real_checkpoint=_REAL_CHECKPOINT_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + start_positions: Optional[torch.LongTensor] = None, + end_positions: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, QuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.gpt_neox( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1).to(start_logits.device) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1).to(end_logits.device) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return QuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) diff --git a/src/transformers/models/robin/tokenization_gpt_neox_fast.py b/src/transformers/models/robin/tokenization_gpt_neox_fast.py new file mode 100644 index 00000000000000..570b2abaa49fde --- /dev/null +++ b/src/transformers/models/robin/tokenization_gpt_neox_fast.py @@ -0,0 +1,144 @@ +# coding=utf-8 +# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes for GPTNeoX.""" +import json +from typing import TYPE_CHECKING, List, Optional, Tuple + +from tokenizers import pre_tokenizers + +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from ...utils import logging + + +if TYPE_CHECKING: + from transformers.pipelines.conversational import Conversation + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} + +PRETRAINED_VOCAB_FILES_MAP = { + "tokenizer_file": { + "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", + }, +} + +PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { + "gpt-neox-20b": 2048, +} + + +class GPTNeoXTokenizerFast(PreTrainedTokenizerFast): + """ + Construct a "fast" GPT-NeoX-20B tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level + Byte-Pair-Encoding. + + This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will + be encoded differently whether it is at the beginning of the sentence (without space) or not: + + ```python + >>> from transformers import GPTNeoXTokenizerFast + + >>> tokenizer = GPTNeoXTokenizerFast.from_pretrained("gpt2") + >>> tokenizer("Hello world")["input_ids"] + [15496, 995] + + >>> tokenizer(" Hello world")["input_ids"] + [18435, 995] + ``` + + You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since + the model was not pretrained this way, it might yield a decrease in performance. + + + + When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`. + + + + This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + Path to the vocabulary file. + merges_file (`str`): + Path to the merges file. + errors (`str`, *optional*, defaults to `"replace"`): + Paradigm to follow when decoding bytes to UTF-8. See + [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. + unk_token (`str`, *optional*, defaults to `<|endoftext|>`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + bos_token (`str`, *optional*, defaults to `<|endoftext|>`): + The beginning of sequence token. + eos_token (`str`, *optional*, defaults to `<|endoftext|>`): + The end of sequence token. + add_prefix_space (`bool`, *optional*, defaults to `False`): + Whether or not to add an initial space to the input. This allows to treat the leading word just as any + other word. (GPTNeoX tokenizer detect beginning of words by the preceding space). + trim_offsets (`bool`, *optional*, defaults to `True`): + Whether or not the post-processing step should trim offsets to avoid including whitespaces. + """ + + vocab_files_names = VOCAB_FILES_NAMES + pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP + max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES + model_input_names = ["input_ids", "attention_mask"] + + def __init__( + self, + vocab_file=None, + merges_file=None, + tokenizer_file=None, + unk_token="<|endoftext|>", + bos_token="<|endoftext|>", + eos_token="<|endoftext|>", + add_prefix_space=False, + **kwargs, + ): + super().__init__( + vocab_file, + merges_file, + tokenizer_file=tokenizer_file, + unk_token=unk_token, + bos_token=bos_token, + eos_token=eos_token, + add_prefix_space=add_prefix_space, + **kwargs, + ) + + pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) + if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space: + pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type")) + pre_tok_state["add_prefix_space"] = add_prefix_space + self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state) + + self.add_prefix_space = add_prefix_space + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + files = self._tokenizer.model.save(save_directory, name=filename_prefix) + return tuple(files) + + def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]: + """This corresponds to DialoGPT variants of models.""" + input_ids = [] + for is_user, text in conversation.iter_texts(): + input_ids.extend(self.encode(text, add_special_tokens=False) + [self.eos_token_id]) + + if len(input_ids) > self.model_max_length: + input_ids = input_ids[-self.model_max_length :] + return input_ids