-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathteam_7564616d_interface.py
113 lines (91 loc) · 3.9 KB
/
team_7564616d_interface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
#!/usr/bin/env python
import datetime as _dt
import os as _os
import pandas as _pd
# Ensure that both source code and bundled data are correctly found
_original_wd = _os.getcwd()
_os.chdir(_os.path.dirname(_os.path.abspath(__file__)))
# Environment needs to be set up before importing the bidding infrastructure
_os.environ["LOCATION_LAT"] = "52.1051"
_os.environ["LOCATION_LON"] = "-3.6680"
from src.bidding import slimjab_bidder as _slimjab_bidder, util as _util
from src.onsite import onsite as _onsite
from src.pricing import pricing as _pricing
from src.solar import solar as _solar
from src.wind import wind as _wind
# Load our mocked/cached API data
_dayahead = _pd.read_csv("../coding_challenge_2022-23_data/market_index.csv")
_weather = _pd.read_csv("../coding_challenge_2022-23_data/weather_mock.csv")
_os.chdir(_original_wd)
def get_price_and_quantity(date: _dt.date) -> _pd.DataFrame:
"""Get the price and quantity bid for the day following `date`.
Arguments:
date (datetime.date): The date the bids would be placed; i.e. the
day before the day for which the bids are prices for.
Returns:
result (pd.DataFrame): A Pandas DataFrame indexed by the ID of the hour,
with columns for `volume` and `price`, where the latter is negative for
importing and positive for exporting.
"""
start = _dt.datetime.combine(date, _dt.time(23))
times = [(start + _dt.timedelta(minutes=30) * i).isoformat() for i in range(48)]
# Patch get_output_template to use the date we specify rather than "today"
_slimjab_bidder.get_output_template = lambda: _util.get_output_template(
dt=(start + _dt.timedelta(days=1)).date()
)
# Get needed data from the mocked APIs
# Previously managed by Node Red
forecast = _weather[
(_weather.time > start.isoformat())
& (_weather.time < (start + _dt.timedelta(hours=26)).isoformat())
].copy()
bare_prices = (
_dayahead[_dayahead.date == start.date().isoformat()]
.sort_values(by=["period"])
.price.to_numpy()
)
# Reformat imported data to match expected format for
# pricing.predict_price_tomorrow
current_price_df = _pd.DataFrame(
{
"date": [
(start + _dt.timedelta(days=-2, hours=1)).isoformat() for _ in range(24)
],
"period": list(range(24)),
"price": bare_prices,
}
)
# Pass data into the prediction routines
# If errors occur, give up as likely some mocked data are missing
# Previously managed by calls from Node Red into the server,
# which call these functions
try:
consumed_onsite = _onsite.get_energy_demand(forecast, start_time=start)
generated_solar = _solar.get_solar_prediction(forecast)
generated_wind = _wind.get_wind_prediction(forecast)
price_df = _pricing.predict_price_tomorrow(current_price_df)
except Exception:
raise ValueError(f"Unable to predict for {date}.")
# Reformat predictions to match expected format for
# slimjab_bidder.slimjab_bidder
# Previously done by an SQL query
net_export = (
generated_wind.WindPower
+ generated_solar.SolarPower
- consumed_onsite["Total demand"]
) * 1000
power_df = _pd.DataFrame({"time": times, "NetPower": net_export})
# Construct bid, previously done by call from Node Red into the server
# If errors occur, give up as likely some mocked data are missing.
try:
result = _slimjab_bidder.slimjab_bidder(price=price_df, power=power_df)
except:
raise ValueError("Unable to predict for {date}.")
# Reformat bid for simplicity of output
result["quantity"] = result.volume * (-1) ** (result.type == "BUY")
result.set_index("hour_ID", inplace=True)
result = result.loc[:, ["quantity", "price"]]
return result
if __name__ == "__main__":
DATE = _dt.date(2022, 1, 2)
print(get_price_and_quantity(DATE))