forked from isohrab/Pupil-locator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
augmentor.py
425 lines (338 loc) · 13 KB
/
augmentor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import os
import cv2
import numpy as np
from config import config
from utils import rf, ri, create_noisy_video
def assert_it(img, lbl):
"""
Add assertation between augmentation operation
:param img:
:param lbl:
:return:
"""
# Check input image
assert_msg = "input image should be HxW, with type of np.uint8"
assert isinstance(img, np.ndarray), assert_msg
assert np.ndim(img) == 2, assert_msg
assert img.dtype == np.uint8, assert_msg
# get the input image shape
h, w = img.shape
assert h == w, "Input image must have same width and height"
# check input label
assert isinstance(lbl, list), "Label should be a list"
assert len(lbl) == 5, "Length of label should be 5 (x, y, w, h, a)"
assert (0 <= lbl[0] <= w), "x value should be in range of 0 and width of image"
assert (0 <= lbl[1] <= h), "y value should be in range of 0 and height of image"
return
class Augmentor(object):
"""
add noise to the images
"""
def __init__(self, noise_dir, noise_parameters):
self.noise_dir = noise_dir
self.cfg = noise_parameters
# check if the noisy videos are exist
if not os.path.isdir(noise_dir):
raise FileNotFoundError
# read all videos
videos_fn = [os.path.join(self.noise_dir, f)
for f in os.listdir(self.noise_dir)
if f.endswith(".mp4")]
# read all frames and load them into memory
self.frames = []
for video in videos_fn:
print("loading video {}".format(video))
cap = cv2.VideoCapture(video)
ret = True
while ret:
ret, frame = cap.read()
if ret:
frame = frame[100:, 50:]
frame = cv2.resize(frame, (2 * self.cfg["input_height"], 2 * self.cfg["input_width"]))
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
self.frames.append(frame)
cap.release()
print("In total {} frames loaded".format(len(self.frames)))
def downscale(self, img, label):
"""
Downscale the input image to a random value defined in the config file
:param img: input image
:param label: input label
:return: return downscaled image and updated ground truth
"""
# should we upscale the input image?
if self.cfg["prob_downscale"] < rf(0, 1):
return img, label
# get a random scale value
s = rf(self.cfg["min_downscale"], self.cfg["max_downscale"])
out_img = cv2.resize(img, dsize=(0, 0), fx=s, fy=s)
# get a random frame as background
idx = ri(0, len(self.frames))
bg = self.frames[idx]
bg = cv2.resize(bg, dsize=(config["input_height"], config["input_width"]))
# put scaled image somewhere in the background
h, w = img.shape
s_h, s_w = out_img.shape
dw = w - s_w
dh = h - s_h
# random location
rx = ri(0, dw)
ry = ri(0, dh)
# put it on the background frame
bg[ry:ry + s_h, rx:rx + s_w] = out_img
# update the label based movement and scale
lx = label[0] * s + rx
ly = label[1] * s + ry
lw = label[2] * s
# clip the values inside the image bound (height, widht)
lx = np.clip(lx, 0, w)
ly = np.clip(ly, 0, h)
return bg, [lx, ly, lw]
def addReflection(self, in_img):
"""
Reflect a random noisy frame on the image
:param in_img: input image
:return: image + reflection
"""
# should we add reflection to the input?
if self.cfg["prob_reflection"] < rf(0, 1):
return in_img
# randomly select a reflection from frames
idx = ri(0, len(self.frames))
frame = self.frames[idx]
# the size of noisy frame is bigger than input image. we choose a random location to crop the noisy
# frame with the size equal to input image
sx = ri(0, config["input_width"])
sy = ri(0, config["input_height"])
ref = frame[sy:sy + config["input_height"], sx:sx + config["input_width"]]
# choose a random weight: read the paper for the details
max_beta = rf(self.cfg["min_reflection"], self.cfg["max_reflection"])
beta = ref / 255
neg = (in_img / 255) - 0.75
beta = beta + neg
beta = np.clip(beta, 0, max_beta)
res = in_img + beta * (255.0 - in_img) * (ref / 255.0)
return np.asarray(res, dtype=np.uint8)
def addBlur(self, in_img):
"""
add gaussian blur to the input image
:param in_img: input image
:return: blured image
"""
if self.cfg["prob_blur"] < rf(0, 1):
return in_img
ksize = ri(self.cfg["min_blurSize"], self.cfg["max_blurSize"])
if ksize % 2 == 0:
ksize = ksize + 1
sigma = rf(self.cfg["min_sigmaRatio"], self.cfg["max_sigmaRatio"])
return cv2.GaussianBlur(in_img, (ksize, ksize), sigma)
def addOcclusion(self, in_img, in_label):
"""
erase some part of pupil area
:param in_img: input image
:param in_label: just use pupil location
:return: erased image
"""
if self.cfg["prob_occlusion"] < rf(0, 1):
return in_img
# randomly choose # object on the eye
num_obj = ri(0, self.cfg["occlusion_max_obj"])
# shorthand the w h
p_x = int(in_label[0])
p_y = int(in_label[1])
p_w = int(in_label[2] * 1.5)
p_h = int(in_label[3] * 1.5)
# choose a random size of the object
obj_w = int(p_w * rf(self.cfg["min_occlusion"], self.cfg["max_occlusion"]))
obj_h = int(p_h * rf(self.cfg["min_occlusion"], self.cfg["max_occlusion"]))
# choose a random location around the pupil
x_area = np.clip(p_x - p_w + ri(0, p_w), 0, self.cfg["input_width"])
y_area = np.clip(p_y - p_h + ri(0, p_h), 0, self.cfg["input_height"])
# choose a random color based the current pupil color
occ_color = ri(245, 256)
# add object in random place close together
for i in range(num_obj):
obj_x = np.clip(x_area + ri(0, obj_w * 2), 0, self.cfg["input_width"] - obj_w)
obj_y = np.clip(y_area + ri(0, obj_h * 2), 0, self.cfg["input_height"] - obj_h)
# create a occlusion matrix
o = np.ones((obj_h, obj_w), dtype=np.uint8) * occ_color
# put occlusion inside the img
in_img[obj_y:obj_y + obj_h, obj_x:obj_x + obj_w] = o
return in_img
def addPupil(self, _img, _lbl, max_attemps=100):
"""
Add a pupil-like ellipse on the image.
:param _img: input image
:param _lbl: use current ground truth info for new pupil
:return:
"""
if self.cfg["prob_pupil"] < rf(0, 1):
return _img
# read the ground-truth info
x = _lbl[0]
y = _lbl[1]
w = _lbl[2]
attemps = 0
# try this # max_attemos
while attemps < max_attemps:
attemps += 1
# choose randomly new location
lx = ri(0, self.cfg["input_width"])
ly = ri(0, self.cfg["input_height"])
lw = ri(w / 2, w * 1.2)
lh = ri(w / 2, w * 1.5)
la = ri(0, 180)
# calculate the distance between real pupil and new one, not overlapping
d = np.sqrt((x - lx) ** 2 + (y - ly) ** 2)
if d < w:
continue
# get the color of new pupil based on current pupil
c = int(_img[int(y), int(x)])
c = ri(c * 0.7, c * 1.2)
# draw an ellipse on the image
img = cv2.ellipse(_img, ((lx, ly), (lw, lh), la), (c), -1)
return img
# if we are here, max_attmeps reached
return _img
def addExposure(self, in_img):
"""
Add exposure to image
:param in_img: input image
:return: exposured image
"""
if self.cfg["prob_exposure"] < rf(0, 1):
return in_img
# get a random exposure value based on max-min value in config file
exp_val = rf(self.cfg["min_exposure"], self.cfg["max_exposure"])
in_img = in_img * exp_val
in_img = np.clip(in_img, 0, 255)
in_img = np.asarray(in_img, dtype=np.uint8)
return in_img
def crop_it(self, img, lbl, max_attemps=100):
"""
crop the input image with a random location and size.
:param img: input size
:param label: location of pupil
:return: cropped image + new label based on crop
"""
if config["crop_probability"] < rf(0, 1):
return img, lbl
# get the shape of image
h, w = img.shape
# get the labels
lx = lbl[0]
ly = lbl[1]
lw = lbl[2]
# find pupil upper right corner and bottom left corner to check if
# it is in the cropped image or not, we consider pupil is circle and use only width
px1 = lx - lw / 2
py1 = ly - lw / 2
px2 = lx + lw / 2
py2 = ly + lw / 2
# check if pupil location is not outside of the image
px1, py1, px2, py2 = np.clip([px1, py1, px2, py2], 0, w)
attemps = 0
while attemps < max_attemps:
# create a random size
crop_size = int(rf(config["crop_min_ratio"], config["crop_max_ratio"]) * w)
# choose a point in top left corner
cx1 = ri(0, w - crop_size)
cy1 = ri(0, w - crop_size)
# bottom right corner
cx2 = cx1 + crop_size
cy2 = cy1 + crop_size
# check if pupil is out side of crop
if px1 < cx1 or px1 > cx2:
attemps += 1
continue
if px2 < cx1 or px2 > cx2:
attemps += 1
continue
if py1 < cy1 or py1 > cy2:
attemps += 1
continue
if py2 < cy1 or py2 > cy2:
attemps += 1
continue
# if we are here, it means we found a crop box
# slice the image
image = img[cy1:cy1 + crop_size, cx1:cx1 + crop_size]
# update the label for crop
lx = lx - cx1
ly = ly - cy1
# resize back to input size
image = cv2.resize(image, dsize=(config["input_height"], config["input_width"]))
# update the labels
s = config["input_width"] / crop_size
lx = lx * s
ly = ly * s
lw = lw * s
return image, [lx, ly, lw]
# if we are here, no crop applied
return img, lbl
def flip_it(self, img, lbl):
"""
flip an image right to left
:rtype: (np.ndarray, list)
:param img: input image
:param lbl: input label
:return: flipped image + altered label
"""
if config["flip_probability"] < rf(0, 1):
return img, lbl
h, w = img.shape
img = cv2.flip(img, 1)
# update the label
lx = w - lbl[0]
ly = lbl[1]
lw = lbl[2]
return img, [lx, ly, lw]
def resize_it(self, img, lbl):
"""
get an image with different size and convert it to Model input size.
Model input size defined in config file. Also update corresponding label
:param img:
:param lbl:
:return: resized image and updated label
"""
h, w = img.shape
# calculate the scale factor.
s = config["input_width"] / w
# Resize the input image, w and h must be same
new_img = cv2.resize(img, dsize=(config["input_width"], config["input_width"]))
# update the labels based new size
lx = lbl[0] * s
ly = lbl[1] * s
lw = lbl[2] * s
lh = lbl[3] * s
la = lbl[4]
return new_img, [lx, ly, lw, lh, la]
def addNoise(self, in_img, in_label):
"""
Add all possible noise to the image
:param in_img: input image
:param in_label: pupil location
:return: return augmented image
"""
# first make a copy of image and labels
c_img = np.array(in_img, copy=True)
c_label = list(np.array(in_label, copy=True))
# apply noise
c_img = self.addPupil(c_img, c_label)
c_img = self.addExposure(c_img)
c_img, c_label = self.flip_it(c_img, c_label)
assert_it(c_img, c_label)
#
c_img, c_label = self.downscale(c_img, c_label)
assert_it(c_img, c_label)
#
c_img, c_label = self.crop_it(c_img, c_label)
assert_it(c_img, c_label)
#
c_img = self.addReflection(c_img)
assert_it(c_img, c_label)
c_img = self.addBlur(c_img)
return c_img, c_label
if __name__ == "__main__":
ag = Augmentor('data/noisy_videos/', config)
create_noisy_video(length=50, fps=1, with_label=True, augmentor=ag)