-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathROSE2_geneMapper.py
798 lines (615 loc) · 30.1 KB
/
ROSE2_geneMapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
#!/usr/bin/python
'''
The MIT License (MIT)
Copyright (c) 2013 Charles Lin
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
'''
# 140306_singleGeneMapper.py
# main method wrapped script to take the enhancer region table output of ROSE_Main and map genes to it
# will create two outputs a gene mapped region table where each row is an enhancer
# and a gene table where each row is a gene
# does this by default for super-enhancers only
# update to the gene mapper that finds nearest gene w/ highest signal
# also switching to using the pipeline utils module as opposed to the
# stripped down ROSE_utils module
import sys
import utils
# import pipeline_dfci
import os
import subprocess
from string import join
from collections import defaultdict
#==================================================================
#=========================GLOBAL===================================
#==================================================================
# Get the script's full local path
whereAmI = os.path.dirname(os.path.realpath(__file__))
print(whereAmI)
# Get the script folder
codeFolder = utils.formatFolder(whereAmI,False)
print('RUNNING ROSE2_META.py FROM %s' % (whereAmI))
#==================================================================
#===========MAPPING GENES TO ENHANCERS WITHOUT BAM RANKING=========
#==================================================================
#this is the traditional way of running gene mapper
def mapEnhancerToGene(annotFile,enhancerFile,transcribedFile='',uniqueGenes=True,searchWindow =50000,noFormatTable = False):
'''
maps genes to enhancers. if uniqueGenes, reduces to gene name only. Otherwise, gives for each refseq
'''
startDict = utils.makeStartDict(annotFile)
enhancerTable = utils.parseTable(enhancerFile,'\t')
#internal parameter for debugging
byRefseq = False
if len(transcribedFile) > 0:
transcribedTable = utils.parseTable(transcribedFile,'\t')
transcribedGenes = [line[1] for line in transcribedTable]
else:
transcribedGenes = startDict.keys()
print('MAKING TRANSCRIPT COLLECTION')
transcribedCollection = utils.makeTranscriptCollection(annotFile,0,0,500,transcribedGenes)
print('MAKING TSS COLLECTION')
tssLoci = []
for geneID in transcribedGenes:
tssLoci.append(utils.makeTSSLocus(geneID,startDict,0,0))
#this turns the tssLoci list into a LocusCollection
#50 is the internal parameter for LocusCollection and doesn't really matter
tssCollection = utils.LocusCollection(tssLoci,50)
geneDict = {'overlapping':defaultdict(list),'proximal':defaultdict(list)}
#dictionaries to hold ranks and superstatus of gene nearby enhancers
rankDict = defaultdict(list)
superDict= defaultdict(list)
#list of all genes that appear in this analysis
overallGeneList = []
if noFormatTable:
#set up the output tables
#first by enhancer
enhancerToGeneTable = [enhancerTable[0]+['OVERLAP_GENES','PROXIMAL_GENES','CLOSEST_GENE']]
else:
#set up the output tables
#first by enhancer
enhancerToGeneTable = [enhancerTable[0][0:9]+['OVERLAP_GENES','PROXIMAL_GENES','CLOSEST_GENE'] + enhancerTable[5][-2:]]
#next by gene
geneToEnhancerTable = [['GENE_NAME','REFSEQ_ID','PROXIMAL_ENHANCERS']]
#next make the gene to enhancer table
geneToEnhancerTable = [['GENE_NAME','REFSEQ_ID','PROXIMAL_ENHANCERS','ENHANCER_RANKS','IS_SUPER']]
for line in enhancerTable:
if line[0][0] =='#' or line[0][0] == 'R':
continue
enhancerString = '%s:%s-%s' % (line[1],line[2],line[3])
enhancerLocus = utils.Locus(line[1],line[2],line[3],'.',line[0])
#overlapping genes are transcribed genes whose transcript is directly in the stitchedLocus
overlappingLoci = transcribedCollection.getOverlap(enhancerLocus,'both')
overlappingGenes =[]
for overlapLocus in overlappingLoci:
overlappingGenes.append(overlapLocus.ID())
#proximalGenes are transcribed genes where the tss is within 50kb of the boundary of the stitched loci
proximalLoci = tssCollection.getOverlap(utils.makeSearchLocus(enhancerLocus,searchWindow,searchWindow),'both')
proximalGenes =[]
for proxLocus in proximalLoci:
proximalGenes.append(proxLocus.ID())
distalLoci = tssCollection.getOverlap(utils.makeSearchLocus(enhancerLocus,1000000,1000000),'both')
distalGenes =[]
for proxLocus in distalLoci:
distalGenes.append(proxLocus.ID())
overlappingGenes = utils.uniquify(overlappingGenes)
proximalGenes = utils.uniquify(proximalGenes)
distalGenes = utils.uniquify(distalGenes)
allEnhancerGenes = overlappingGenes + proximalGenes + distalGenes
#these checks make sure each gene list is unique.
#technically it is possible for a gene to be overlapping, but not proximal since the
#gene could be longer than the 50kb window, but we'll let that slide here
for refID in overlappingGenes:
if proximalGenes.count(refID) == 1:
proximalGenes.remove(refID)
for refID in proximalGenes:
if distalGenes.count(refID) == 1:
distalGenes.remove(refID)
#Now find the closest gene
if len(allEnhancerGenes) == 0:
closestGene = ''
else:
#get enhancerCenter
enhancerCenter = (int(line[2]) + int(line[3]))/2
#get absolute distance to enhancer center
distList = [abs(enhancerCenter - startDict[geneID]['start'][0]) for geneID in allEnhancerGenes]
#get the ID and convert to name
closestGene = startDict[allEnhancerGenes[distList.index(min(distList))]]['name']
#NOW WRITE THE ROW FOR THE ENHANCER TABLE
if noFormatTable:
newEnhancerLine = list(line)
newEnhancerLine.append(join(utils.uniquify([startDict[x]['name'] for x in overlappingGenes]),','))
newEnhancerLine.append(join(utils.uniquify([startDict[x]['name'] for x in proximalGenes]),','))
newEnhancerLine.append(closestGene)
else:
newEnhancerLine = line[0:9]
newEnhancerLine.append(join(utils.uniquify([startDict[x]['name'] for x in overlappingGenes]),','))
newEnhancerLine.append(join(utils.uniquify([startDict[x]['name'] for x in proximalGenes]),','))
newEnhancerLine.append(closestGene)
newEnhancerLine += line[-2:]
enhancerToGeneTable.append(newEnhancerLine)
#Now grab all overlapping and proximal genes for the gene ordered table
overallGeneList +=overlappingGenes
for refID in overlappingGenes:
geneDict['overlapping'][refID].append(enhancerString)
rankDict[refID].append(int(line[-2]))
superDict[refID].append(int(line[-1]))
overallGeneList+=proximalGenes
for refID in proximalGenes:
geneDict['proximal'][refID].append(enhancerString)
rankDict[refID].append(int(line[-2]))
superDict[refID].append(int(line[-1]))
#End loop through
#Make table by gene
overallGeneList = utils.uniquify(overallGeneList)
#use enhancer rank to order
rankOrder = utils.order([min(rankDict[x]) for x in overallGeneList])
usedNames = []
for i in rankOrder:
refID = overallGeneList[i]
geneName = startDict[refID]['name']
if usedNames.count(geneName) > 0 and uniqueGenes == True:
continue
else:
usedNames.append(geneName)
proxEnhancers = geneDict['overlapping'][refID]+geneDict['proximal'][refID]
superStatus = max(superDict[refID])
enhancerRanks = join([str(x) for x in rankDict[refID]],',')
newLine = [geneName,refID,join(proxEnhancers,','),enhancerRanks,superStatus]
geneToEnhancerTable.append(newLine)
#resort enhancerToGeneTable
if noFormatTable:
return enhancerToGeneTable,geneToEnhancerTable
else:
enhancerOrder = utils.order([int(line[-2]) for line in enhancerToGeneTable[1:]])
sortedTable = [enhancerToGeneTable[0]]
for i in enhancerOrder:
sortedTable.append(enhancerToGeneTable[(i+1)])
return sortedTable,geneToEnhancerTable
#==================================================================
#===========MAPPING GENES TO ENHANCERS WITH BAM RANKING============
#==================================================================
def makeSignalDict(mappedGFFFile, controlMappedGFFFile=''):
'''
makes a signal dict
'''
print('\t called makeSignalDict on %s (ctrl: %s)' % (mappedGFFFile, controlMappedGFFFile))
signalDict = defaultdict(float)
mappedGFF = utils.parseTable(mappedGFFFile, '\t')
if len(controlMappedGFFFile) > 0:
controlGFF = utils.parseTable(controlMappedGFFFile, '\t')
for i in range(1, len(mappedGFF)):
signal = float(mappedGFF[i][2]) - float(controlGFF[i][2])
if signal < 0:
signal = 0.0
signalDict[mappedGFF[i][0]] = signal
else:
for i in range(1, len(mappedGFF)):
signal = float(mappedGFF[i][2])
signalDict[mappedGFF[i][0]] = signal
return signalDict
#makeSignalDict('../sshfs/x_rose/mm9_TSS_ENHANCER_GENES_-5000_+5000_CONV3_CD4.nomito.rmdup.bam.gff')
def mapEnhancerToGeneTop(rankByBamFile, controlBamFile, genome, annotFile, enhancerFile, transcribedFile='', uniqueGenes=True, searchWindow=50000, noFormatTable=False):
'''
maps genes to enhancers. if uniqueGenes, reduces to gene name only. Otherwise, gives for each refseq
'''
startDict = utils.makeStartDict(annotFile)
enhancerName = enhancerFile.split('/')[-1].split('.')[0]
enhancerTable = utils.parseTable(enhancerFile, '\t')
# internal parameter for debugging
byRefseq = False
if len(transcribedFile) > 0:
transcribedTable = utils.parseTable(transcribedFile, '\t')
transcribedGenes = [line[1] for line in transcribedTable]
else:
transcribedGenes = startDict.keys()
print('MAKING TRANSCRIPT COLLECTION')
transcribedCollection = utils.makeTranscriptCollection(
annotFile, 0, 0, 500, transcribedGenes)
print('MAKING TSS COLLECTION')
tssLoci = []
for geneID in transcribedGenes:
tssLoci.append(utils.makeTSSLocus(geneID, startDict, 0, 0))
# this turns the tssLoci list into a LocusCollection
# 50 is the internal parameter for LocusCollection and doesn't really
# matter
tssCollection = utils.LocusCollection(tssLoci, 50)
geneDict = {'overlapping': defaultdict(
list), 'proximal': defaultdict(list)}
# dictionaries to hold ranks and superstatus of gene nearby enhancers
rankDict = defaultdict(list)
superDict = defaultdict(list)
# list of all genes that appear in this analysis
overallGeneList = []
# find the damn header
for line in enhancerTable:
if line[0][0] == '#':
continue
else:
header = line
break
if noFormatTable:
# set up the output tables
# first by enhancer
enhancerToGeneTable = [
header + ['OVERLAP_GENES', 'PROXIMAL_GENES', 'CLOSEST_GENE']]
else:
# set up the output tables
# first by enhancer
enhancerToGeneTable = [
header[0:9] + ['OVERLAP_GENES', 'PROXIMAL_GENES', 'CLOSEST_GENE'] + header[-2:]]
# next by gene
geneToEnhancerTable = [
['GENE_NAME', 'REFSEQ_ID', 'PROXIMAL_ENHANCERS']]
# next make the gene to enhancer table
geneToEnhancerTable = [
['GENE_NAME', 'REFSEQ_ID', 'PROXIMAL_ENHANCERS', 'ENHANCER_RANKS', 'IS_SUPER', 'ENHANCER_SIGNAL']]
for line in enhancerTable:
if line[0][0] == '#' or line[0][0] == 'R':
continue
enhancerString = '%s:%s-%s' % (line[1], line[2], line[3])
enhancerLocus = utils.Locus(line[1], line[2], line[3], '.', line[0])
# overlapping genes are transcribed genes whose transcript is directly
# in the stitchedLocus
overlappingLoci = transcribedCollection.getOverlap(
enhancerLocus, 'both')
overlappingGenes = []
for overlapLocus in overlappingLoci:
overlappingGenes.append(overlapLocus.ID())
# proximalGenes are transcribed genes where the tss is within 50kb of
# the boundary of the stitched loci
proximalLoci = tssCollection.getOverlap(
utils.makeSearchLocus(enhancerLocus, searchWindow, searchWindow), 'both')
proximalGenes = []
for proxLocus in proximalLoci:
proximalGenes.append(proxLocus.ID())
distalLoci = tssCollection.getOverlap(
utils.makeSearchLocus(enhancerLocus, 1000000, 1000000), 'both')
distalGenes = []
for proxLocus in distalLoci:
distalGenes.append(proxLocus.ID())
overlappingGenes = utils.uniquify(overlappingGenes)
proximalGenes = utils.uniquify(proximalGenes)
distalGenes = utils.uniquify(distalGenes)
allEnhancerGenes = overlappingGenes + proximalGenes + distalGenes
# these checks make sure each gene list is unique.
# technically it is possible for a gene to be overlapping, but not proximal since the
# gene could be longer than the 50kb window, but we'll let that slide
# here
for refID in overlappingGenes:
if proximalGenes.count(refID) == 1:
proximalGenes.remove(refID)
for refID in proximalGenes:
if distalGenes.count(refID) == 1:
distalGenes.remove(refID)
# Now find the closest gene
if len(allEnhancerGenes) == 0:
closestGene = ''
else:
# get enhancerCenter
enhancerCenter = (int(line[2]) + int(line[3])) / 2
# get absolute distance to enhancer center
distList = [abs(enhancerCenter - startDict[geneID]['start'][0])
for geneID in allEnhancerGenes]
# get the ID and convert to name
closestGene = startDict[
allEnhancerGenes[distList.index(min(distList))]]['name']
# NOW WRITE THE ROW FOR THE ENHANCER TABLE
if noFormatTable:
newEnhancerLine = list(line)
newEnhancerLine.append(
join(utils.uniquify([startDict[x]['name'] for x in overlappingGenes]), ','))
newEnhancerLine.append(
join(utils.uniquify([startDict[x]['name'] for x in proximalGenes]), ','))
newEnhancerLine.append(closestGene)
else:
newEnhancerLine = line[0:9]
newEnhancerLine.append(
join(utils.uniquify([startDict[x]['name'] for x in overlappingGenes]), ','))
newEnhancerLine.append(
join(utils.uniquify([startDict[x]['name'] for x in proximalGenes]), ','))
newEnhancerLine.append(closestGene)
newEnhancerLine += line[-2:]
enhancerToGeneTable.append(newEnhancerLine)
# Now grab all overlapping and proximal genes for the gene ordered
# table
overallGeneList += overlappingGenes
for refID in overlappingGenes:
geneDict['overlapping'][refID].append(enhancerString)
rankDict[refID].append(int(line[-2]))
superDict[refID].append(int(line[-1]))
overallGeneList += proximalGenes
for refID in proximalGenes:
geneDict['proximal'][refID].append(enhancerString)
rankDict[refID].append(int(line[-2]))
superDict[refID].append(int(line[-1]))
# End loop through
# Make table by gene
print('MAKING ENHANCER ASSOCIATED GENE TSS COLLECTION')
overallGeneList = utils.uniquify(overallGeneList)
#get the chromLists from the various bams here
cmd = 'samtools idxstats %s' % (rankByBamFile)
idxStats = subprocess.Popen(cmd,stdout=subprocess.PIPE,shell=True)
idxStats= idxStats.communicate()
bamChromList = [line.split('\t')[0] for line in idxStats[0].split('\n')[0:-2]]
if len(controlBamFile) > 0:
cmd = 'samtools idxstats %s' % (controlBamFile)
idxStats = subprocess.Popen(cmd,stdout=subprocess.PIPE,shell=True)
idxStats= idxStats.communicate()
bamChromListControl = [line.split('\t')[0] for line in idxStats[0].split('\n')[0:-2]]
bamChromList = [chrom for chrom in bamChromList if bamChromListControl.count(chrom) != 0]
#now make sure no genes have a bad chrom
overallGeneList = [gene for gene in overallGeneList if bamChromList.count(startDict[gene]['chr']) != 0]
#now make an enhancer collection of all transcripts
enhancerGeneCollection = utils.makeTranscriptCollection(
annotFile, 5000, 5000, 500, overallGeneList)
enhancerGeneGFF = utils.locusCollectionToGFF(enhancerGeneCollection)
# dump the gff to file
enhancerFolder = utils.getParentFolder(enhancerFile)
gffRootName = "%s_TSS_ENHANCER_GENES_-5000_+5000" % (genome)
enhancerGeneGFFFile = "%s%s_%s.gff" % (enhancerFolder, enhancerName,gffRootName)
utils.unParseTable(enhancerGeneGFF, enhancerGeneGFFFile, '\t')
# now we need to run bamToGFF
# Try to use the bamliquidatior_path.py script on cluster, otherwise, failover to local (in path), otherwise fail.
bamliquidator_path = 'bamliquidator_batch'
print('MAPPING SIGNAL AT ENHANCER ASSOCIATED GENE TSS')
# map density at genes in the +/- 5kb tss region
# first on the rankBy bam
bamName = rankByBamFile.split('/')[-1]
mappedRankByFolder = "%s%s_%s_%s/" % (enhancerFolder, enhancerName,gffRootName, bamName)
mappedRankByFile = "%s%s_%s_%s/matrix.txt" % (enhancerFolder,enhancerName, gffRootName, bamName)
cmd = bamliquidator_path + ' --sense . -e 200 --match_bamToGFF -r %s -o %s %s' % (enhancerGeneGFFFile, mappedRankByFolder,rankByBamFile)
print("Mapping rankby bam %s" % (rankByBamFile))
print(cmd)
os.system(cmd)
#check for completion
if utils.checkOutput(mappedRankByFile,0.2,5):
print("SUCCESSFULLY MAPPED TO %s FROM BAM: %s" % (enhancerGeneGFFFile, rankByBamFile))
else:
print("ERROR: FAILED TO MAP %s FROM BAM: %s" % (enhancerGeneGFFFile, rankByBamFile))
sys.exit()
# next on the control bam if it exists
if len(controlBamFile) > 0:
controlName = controlBamFile.split('/')[-1]
mappedControlFolder = "%s%s_%s_%s/" % (
enhancerFolder, enhancerName,gffRootName, controlName)
mappedControlFile = "%s%s_%s_%s/matrix.txt" % (
enhancerFolder, enhancerName,gffRootName, controlName)
cmd = bamliquidator_path + ' --sense . -e 200 --match_bamToGFF -r %s -o %s %s' % (enhancerGeneGFFFile, mappedControlFolder,controlBamFile)
print("Mapping control bam %s" % (controlBamFile))
print(cmd)
os.system(cmd)
#check for completion
if utils.checkOutput(mappedControlFile,0.2,5):
print("SUCCESSFULLY MAPPED TO %s FROM BAM: %s" % (enhancerGeneGFFFile, controlBamFile))
else:
print("ERROR: FAILED TO MAP %s FROM BAM: %s" % (enhancerGeneGFFFile, controlBamFile))
sys.exit()
# now get the appropriate output files
if len(controlBamFile) > 0:
print("CHECKING FOR MAPPED OUTPUT AT %s AND %s" %
(mappedRankByFile, mappedControlFile))
if utils.checkOutput(mappedRankByFile, 1, 1) and utils.checkOutput(mappedControlFile, 1, 1):
print('MAKING ENHANCER ASSOCIATED GENE TSS SIGNAL DICTIONARIES')
signalDict = makeSignalDict(mappedRankByFile, mappedControlFile)
else:
print("NO MAPPING OUTPUT DETECTED")
sys.exit()
else:
print("CHECKING FOR MAPPED OUTPUT AT %s" % (mappedRankByFile))
if utils.checkOutput(mappedRankByFile, 1, 30):
print('MAKING ENHANCER ASSOCIATED GENE TSS SIGNAL DICTIONARIES')
signalDict = makeSignalDict(mappedRankByFile)
else:
print("NO MAPPING OUTPUT DETECTED")
sys.exit()
# use enhancer rank to order
rankOrder = utils.order([min(rankDict[x]) for x in overallGeneList])
usedNames = []
# make a new dict to hold TSS signal by max per geneName
geneNameSigDict = defaultdict(list)
print('MAKING GENE TABLE')
for i in rankOrder:
refID = overallGeneList[i]
geneName = startDict[refID]['name']
if usedNames.count(geneName) > 0 and uniqueGenes == True:
continue
else:
usedNames.append(geneName)
proxEnhancers = geneDict['overlapping'][
refID] + geneDict['proximal'][refID]
superStatus = max(superDict[refID])
enhancerRanks = join([str(x) for x in rankDict[refID]], ',')
enhancerSignal = signalDict[refID]
geneNameSigDict[geneName].append(enhancerSignal)
newLine = [geneName, refID, join(
proxEnhancers, ','), enhancerRanks, superStatus, enhancerSignal]
geneToEnhancerTable.append(newLine)
#utils.unParseTable(geneToEnhancerTable,'/grail/projects/newRose/geneMapper/foo.txt','\t')
print('MAKING ENHANCER TO TOP GENE TABLE')
if noFormatTable:
enhancerToTopGeneTable = [
enhancerToGeneTable[0] + ['TOP_GENE', 'TSS_SIGNAL']]
else:
enhancerToTopGeneTable = [enhancerToGeneTable[0][0:12] + [
'TOP_GENE', 'TSS_SIGNAL'] + enhancerToGeneTable[0][-2:]]
for line in enhancerToGeneTable[1:]:
geneList = []
if noFormatTable:
geneList += line[-3].split(',')
geneList += line[-2].split(',')
else:
geneList += line[10].split(',')
geneList += line[11].split(',')
geneList = utils.uniquify([x for x in geneList if len(x) > 0])
if len(geneList) > 0:
try:
sigVector = [max(geneNameSigDict[x]) for x in geneList]
maxIndex = sigVector.index(max(sigVector))
maxGene = geneList[maxIndex]
maxSig = sigVector[maxIndex]
if maxSig == 0.0:
maxGene = 'NONE'
maxSig = 'NONE'
except ValueError:
if len(geneList) == 1:
maxGene = geneList[0]
maxSig = 'NONE'
else:
maxGene = 'NONE'
maxSig = 'NONE'
else:
maxGene = 'NONE'
maxSig = 'NONE'
if noFormatTable:
newLine = line + [maxGene, maxSig]
else:
newLine = line[0:12] + [maxGene, maxSig] + line[-2:]
enhancerToTopGeneTable.append(newLine)
# resort enhancerToGeneTable
if noFormatTable:
return enhancerToGeneTable, enhancerToTopGeneTable, geneToEnhancerTable
else:
enhancerOrder = utils.order([int(line[-2])
for line in enhancerToGeneTable[1:]])
sortedTable = [enhancerToGeneTable[0]]
sortedTopGeneTable = [enhancerToTopGeneTable[0]]
for i in enhancerOrder:
sortedTable.append(enhancerToGeneTable[(i + 1)])
sortedTopGeneTable.append(enhancerToTopGeneTable[(i + 1)])
return sortedTable, sortedTopGeneTable, geneToEnhancerTable
#==================================================================
#=========================MAIN METHOD==============================
#==================================================================
def main():
'''
main run call
'''
from optparse import OptionParser
usage = "usage: %prog [options] -g [GENOME] -i [INPUT_ENHANCER_FILE]"
parser = OptionParser(usage=usage)
# required flags
parser.add_option("-i", "--i", dest="input", nargs=1, default=None,
help="Enter a ROSE ranked enhancer or super-enhancer file")
parser.add_option("-g", "--genome", dest="genome", nargs=1, default=None,
help="Enter the genome build (MM9,MM8,HG18,HG19)")
# optional flags
parser.add_option("-r", "--rankby", dest="rankby", nargs=1, default=None,
help="Enter the bam used to rank enhancers")
parser.add_option("-c", "--control", dest="control", nargs=1, default='',
help="Enter a background bam for background correction")
parser.add_option("-l", "--list", dest="geneList", nargs=1, default=None,
help="Enter a gene list to filter through")
parser.add_option("-o", "--out", dest="out", nargs=1, default=None,
help="Enter an output folder. Default will be same folder as input file")
parser.add_option(
"-w", "--window", dest="window", nargs=1, default=50000,
help="Enter a search distance for genes. Default is 50,000bp")
parser.add_option(
"-f", "--format", dest="formatTable", action="store_true", default=False,
help="If flagged, maintains original formatting of input table")
# RETRIEVING FLAGS
(options, args) = parser.parse_args()
if not options.input or not options.genome:
parser.print_help()
exit()
print(options)
# GETTING THE GENOME
genome = options.genome
print('USING %s AS THE GENOME' % genome)
# GETTING THE CORRECT ANNOT FILE
genomeDict = {
'HG18': '%s/annotation/hg18_refseq.ucsc' % (codeFolder),
'MM9': '%s/annotation/mm9_refseq.ucsc' % (codeFolder),
'HG19': '%s/annotation/hg19_refseq.ucsc' % (codeFolder),
'MM8': '%s/annotation/mm8_refseq.ucsc' % (codeFolder),
'MM10': '%s/annotation/mm10_refseq.ucsc' % (codeFolder),
'RN4': '%s/annotation/rn4_refseq.ucsc' % (codeFolder),
}
annotFile = genomeDict[genome.upper()]
# GETTING THE INPUT
enhancerFile = options.input
window = int(options.window)
# making the out folder if it doesn't exist
if options.out:
outFolder = utils.formatFolder(options.out, True)
else:
outFolder = join(enhancerFile.split('/')[0:-1], '/') + '/'
# GETTING BAM INFO
rankByBamFile = options.rankby
controlBamFile = options.control
# CHECK FORMATTING FLAG
if options.formatTable:
noFormatTable = True
else:
noFormatTable = False
# GETTING THE TRANSCRIBED LIST
if options.geneList:
transcribedFile = options.geneList
else:
transcribedFile = ''
if options.rankby:
print("MAPPING GENES TO ENHANCERS USING CLOSEST ACTIVE GENE")
enhancerToGeneTable, enhancerToTopGeneTable, geneToEnhancerTable = mapEnhancerToGeneTop(
rankByBamFile, controlBamFile, genome, annotFile, enhancerFile, transcribedFile, True, window, noFormatTable)
# Writing enhancer output
enhancerFileName = enhancerFile.split('/')[-1].split('.')[0]
if window != 50000:
# writing the enhancer table
out1 = '%s%s_ENHANCER_TO_GENE_%sKB.txt' % (
outFolder, enhancerFileName, window / 1000)
print("writing output to %s" % (out1))
utils.unParseTable(enhancerToGeneTable, out1, '\t')
# writing enhancer top gene table
out2 = '%s%s_ENHANCER_TO_TOP_GENE_%sKB.txt' % (
outFolder, enhancerFileName, window / 1000)
utils.unParseTable(enhancerToTopGeneTable, out2, '\t')
# writing the gene table
out3 = '%s%s_GENE_TO_ENHANCER_%sKB.txt' % (
outFolder, enhancerFileName, window / 1000)
utils.unParseTable(geneToEnhancerTable, out3, '\t')
else:
# writing the enhancer table
out1 = '%s%s_ENHANCER_TO_GENE.txt' % (outFolder, enhancerFileName)
utils.unParseTable(enhancerToGeneTable, out1, '\t')
# writing the enhancer table
out2 = '%s%s_ENHANCER_TO_TOP_GENE.txt' % (outFolder, enhancerFileName)
utils.unParseTable(enhancerToTopGeneTable, out2, '\t')
# writing the gene table
out3 = '%s%s_GENE_TO_ENHANCER.txt' % (outFolder, enhancerFileName)
utils.unParseTable(geneToEnhancerTable, out3, '\t')
else:
#do traditional mapping
print("MAPPING GENES TO ENHANCERS USING PROXIMITY RULE")
enhancerToGeneTable,geneToEnhancerTable = mapEnhancerToGene(annotFile,enhancerFile,transcribedFile,True,window,noFormatTable)
#Writing enhancer output
enhancerFileName = enhancerFile.split('/')[-1].split('.')[0]
if window != 50000:
#writing the enhancer table
out1 = '%s%s_ENHANCER_TO_GENE_%sKB.txt' % (outFolder,enhancerFileName,window/1000)
utils.unParseTable(enhancerToGeneTable,out1,'\t')
#writing the gene table
out2 = '%s%s_GENE_TO_ENHANCER_%sKB.txt' % (outFolder,enhancerFileName,window/1000)
utils.unParseTable(geneToEnhancerTable,out2,'\t')
else:
#writing the enhancer table
out1 = '%s%s_ENHANCER_TO_GENE.txt' % (outFolder,enhancerFileName)
utils.unParseTable(enhancerToGeneTable,out1,'\t')
#writing the gene table
out2 = '%s%s_GENE_TO_ENHANCER.txt' % (outFolder,enhancerFileName)
utils.unParseTable(geneToEnhancerTable,out2,'\t')
if __name__ == "__main__":
main()