diff --git a/CHANGELOG.rst b/CHANGELOG.rst index bc3a53e9..13812029 100644 --- a/CHANGELOG.rst +++ b/CHANGELOG.rst @@ -4,6 +4,7 @@ Changelog Version 4.0.0 ------------- +- Mixed subtree processing can be used in morph_stats app via the use_subtrees flag. - ``neurom.view.[plot_tree|plot_tree3d|plot_soma|plot_soma3D]`` were hidden from the neurom.view module. They can still be imported from neurom.view.matplotlib_impl. - Deprecated modules and classes were removed. diff --git a/neurom/apps/cli.py b/neurom/apps/cli.py index 845d66df..74714820 100644 --- a/neurom/apps/cli.py +++ b/neurom/apps/cli.py @@ -95,9 +95,13 @@ def view(input_file, is_3d, plane, backend, realistic_diameters): help='If enabled the directory is treated as a population') @click.option('-I', '--ignored-exceptions', help='Exception to ignore', type=click.Choice(morph_stats.IGNORABLE_EXCEPTIONS.keys())) -def stats(datapath, config, output, full_config, as_population, ignored_exceptions): +@click.option('--use-subtrees', is_flag=True, show_default=True, default=False, + help="Enable mixed subtree processing.") +def stats(datapath, config, output, full_config, as_population, ignored_exceptions, use_subtrees): """Cli for apps/morph_stats.""" - morph_stats.main(datapath, config, output, full_config, as_population, ignored_exceptions) + morph_stats.main( + datapath, config, output, full_config, as_population, ignored_exceptions, use_subtrees + ) @cli.command(short_help='Perform checks on morphologies, more details at' diff --git a/neurom/apps/morph_stats.py b/neurom/apps/morph_stats.py index b1d90d9b..99bb7b46 100644 --- a/neurom/apps/morph_stats.py +++ b/neurom/apps/morph_stats.py @@ -59,14 +59,14 @@ IGNORABLE_EXCEPTIONS = {'SomaError': SomaError} -def _run_extract_stats(morph, config): +def _run_extract_stats(morph, config, use_subtrees=False): """The function to be called by multiprocessing.Pool.imap_unordered.""" if not isinstance(morph, Morphology): morph = nm.load_morphology(morph) - return morph.name, extract_stats(morph, config) + return morph.name, extract_stats(morph, config, use_subtrees=use_subtrees) -def extract_dataframe(morphs, config, n_workers=1): +def extract_dataframe(morphs, config, n_workers=1, use_subtrees=False): """Extract stats grouped by neurite type from morphs. Arguments: @@ -83,6 +83,7 @@ def extract_dataframe(morphs, config, n_workers=1): - morphology: same as neurite entry, but it will not be run on each neurite_type, but only once on the whole morphology. n_workers (int): number of workers for multiprocessing (on collection of morphs) + use_subtrees (bool): Enable of heterogeneous subtree processing. Returns: The extracted statistics @@ -94,7 +95,7 @@ def extract_dataframe(morphs, config, n_workers=1): if isinstance(morphs, Morphology): morphs = [morphs] - func = partial(_run_extract_stats, config=config) + func = partial(_run_extract_stats, config=config, use_subtrees=use_subtrees) if n_workers == 1: stats = list(map(func, morphs)) else: @@ -114,12 +115,12 @@ def extract_dataframe(morphs, config, n_workers=1): extract_dataframe.__doc__ += str(EXAMPLE_CONFIG) -def _get_feature_stats(feature_name, morphs, modes, kwargs): +def _get_feature_stats(feature_name, morphs, modes, use_subtrees=False, **kwargs): """Insert the stat data in the dict. If the feature is 2-dimensional, the feature is flattened on its last axis """ - def stat_name_format(mode, feature_name, kwargs): + def stat_name_format(mode, feature_name, **kwargs): """Returns the key name for the data dictionary. The key is a combination of the mode, feature_name and an optional suffix of all the extra @@ -135,14 +136,16 @@ def stat_name_format(mode, feature_name, kwargs): return f"{mode}_{feature_name}" data = {} - value, func = _get_feature_value_and_func(feature_name, morphs, **kwargs) + value, func = _get_feature_value_and_func( + feature_name, morphs, use_subtrees=use_subtrees, **kwargs + ) shape = func.shape if len(shape) > 2: raise ValueError(f'Len of "{feature_name}" feature shape must be <= 2') # pragma: no cover for mode in modes: - stat_name = stat_name_format(mode, feature_name, kwargs) + stat_name = stat_name_format(mode, feature_name, **kwargs) stat = value if isinstance(value, Sized): @@ -161,7 +164,7 @@ def stat_name_format(mode, feature_name, kwargs): return data -def extract_stats(morphs, config): +def extract_stats(morphs, config, use_subtrees=False): """Extract stats from morphs. Arguments: @@ -180,6 +183,7 @@ def extract_stats(morphs, config): ['min', 'max', 'median', 'mean', 'std', 'raw', 'sum'] - morphology: same as neurite entry, but it will not be run on each neurite_type, but only once on the whole morphology. + use_subtrees (bool): Enable of heterogeneous subtree processing. Returns: The extracted statistics @@ -215,12 +219,18 @@ def extract_stats(morphs, config): for neurite_type in types: feature_kwargs["neurite_type"] = neurite_type stats[neurite_type.name].update( - _get_feature_stats(feature_name, morphs, modes, feature_kwargs) + _get_feature_stats( + feature_name, morphs, modes, + use_subtrees=use_subtrees, **feature_kwargs + ) ) else: stats[category].update( - _get_feature_stats(feature_name, morphs, modes, feature_kwargs) + _get_feature_stats( + feature_name, morphs, modes, + use_subtrees=use_subtrees, **feature_kwargs + ) ) return dict(stats) @@ -347,7 +357,15 @@ def _sanitize_config(config): return config -def main(datapath, config, output_file, is_full_config, as_population, ignored_exceptions): +def main( + datapath, + config, + output_file, + is_full_config, + as_population, + ignored_exceptions, + use_subtrees=False +): """Main function that get statistics for morphologies. Args: @@ -357,6 +375,7 @@ def main(datapath, config, output_file, is_full_config, as_population, ignored_e is_full_config (bool): should be statistics made over all possible features, modes, neurites as_population (bool): treat ``datapath`` as directory of morphologies population ignored_exceptions (list|tuple|None): exceptions to ignore when loading a morphology + use_subtrees (bool): Enable of heterogeneous subtree processing """ config = full_config() if is_full_config else get_config(config, EXAMPLE_CONFIG) @@ -374,9 +393,9 @@ def main(datapath, config, output_file, is_full_config, as_population, ignored_e ) if as_population: - results = {datapath: extract_stats(morphs, config)} + results = {datapath: extract_stats(morphs, config, use_subtrees=use_subtrees)} else: - results = {m.name: extract_stats(m, config) for m in morphs} + results = {m.name: extract_stats(m, config, use_subtrees=use_subtrees) for m in morphs} if not output_file: print(json.dumps(results, indent=2, separators=(',', ':'), cls=NeuromJSON)) diff --git a/tests/apps/test_cli.py b/tests/apps/test_cli.py index 763ebb79..c41213da 100644 --- a/tests/apps/test_cli.py +++ b/tests/apps/test_cli.py @@ -83,6 +83,16 @@ def test_morph_stat_full_config(): assert not df.empty +def test_morph_stat_full_config__subtrees(): + runner = CliRunner() + filename = DATA / 'h5/v1/Neuron.h5' + with tempfile.NamedTemporaryFile() as f: + result = runner.invoke(cli, ['stats', str(filename), '--full-config', '--use-subtrees', '--output', f.name]) + assert result.exit_code == 0 + df = pd.read_csv(f) + assert not df.empty + + def test_morph_stat_invalid_config(): runner = CliRunner() with tempfile.NamedTemporaryFile('w') as config_f: diff --git a/tests/test_mixed.py b/tests/test_mixed.py index 00d4187d..1eba5c6e 100644 --- a/tests/test_mixed.py +++ b/tests/test_mixed.py @@ -3,6 +3,7 @@ import pytest import neurom import numpy as np +import pandas as pd import numpy.testing as npt from neurom import NeuriteType from neurom.features import get @@ -14,6 +15,7 @@ import neurom.core.morphology import neurom.features.neurite +import neurom.apps.morph_stats @pytest.fixture @@ -240,6 +242,148 @@ def assert_sections(neurite, section_type, iterator_type, expected_section_ids): ) +def test_mixed_morph_stats(mixed_morph): + + def assert_stats_equal(actual_dict, expected_dict): + assert actual_dict.keys() == expected_dict.keys() + for (key, value) in actual_dict.items(): + expected_value = expected_dict[key] + if value is None or expected_value is None: + assert expected_value is value + else: + npt.assert_almost_equal(value, expected_value, decimal=3, err_msg=f"\nKey: {key}") + + cfg = { + 'neurite': { + 'max_radial_distance': ['mean'], + 'number_of_sections': ['min'], + 'number_of_bifurcations': ['max'], + 'number_of_leaves': ['median'], + 'total_length': ['min'], + 'total_area': ['max'], + 'total_volume': ['median'], + 'section_lengths': ['mean'], + 'section_term_lengths': ['mean'], + 'section_bif_lengths': ['mean'], + 'section_branch_orders': ['mean'], + 'section_bif_branch_orders': ['mean'], + 'section_term_branch_orders': ['mean'], + 'section_path_distances': ['mean'], + 'section_taper_rates': ['median'], + 'local_bifurcation_angles': ['mean'], + 'remote_bifurcation_angles': ['mean'], + 'partition_asymmetry': ['mean'], + 'partition_asymmetry_length': ['mean'], + 'sibling_ratios': ['mean'], + 'diameter_power_relations': ['median'], + 'section_radial_distances': ['mean'], + 'section_term_radial_distances': ['mean'], + 'section_bif_radial_distances': ['mean'], + 'terminal_path_lengths': ['mean'], + 'section_volumes': ['min'], + 'section_areas': ['mean'], + 'section_tortuosity': ['mean'], + 'section_strahler_orders': ['min'] + }, + 'morphology': { + 'soma_surface_area': ['mean'], + 'soma_radius': ['max'], + 'max_radial_distance': ['mean'], + 'number_of_sections_per_neurite': ['median'], + 'total_length_per_neurite': ['mean'], + 'total_area_per_neurite': ['mean'], + 'total_volume_per_neurite': ['mean'], + 'number_of_neurites': ['median'] + }, + 'neurite_type': ['AXON', 'BASAL_DENDRITE', 'APICAL_DENDRITE'] + } + + res = neurom.apps.morph_stats.extract_stats(mixed_morph, cfg, use_subtrees=False) + + expected_axon_wout_subtrees = { + 'max_number_of_bifurcations': 0, + 'max_total_area': 0, + 'mean_local_bifurcation_angles': None, + 'mean_max_radial_distance': 0.0, + 'mean_partition_asymmetry': None, + 'mean_partition_asymmetry_length': None, + 'mean_remote_bifurcation_angles': None, + 'mean_section_areas': None, + 'mean_section_bif_branch_orders': None, + 'mean_section_bif_lengths': None, + 'mean_section_bif_radial_distances': None, + 'mean_section_branch_orders': None, + 'mean_section_lengths': None, + 'mean_section_path_distances': None, + 'mean_section_radial_distances': None, + 'mean_section_term_branch_orders': None, + 'mean_section_term_lengths': None, + 'mean_section_term_radial_distances': None, + 'mean_section_tortuosity': None, + 'mean_sibling_ratios': None, + 'mean_terminal_path_lengths': None, + 'median_diameter_power_relations': None, + 'median_number_of_leaves': 0, + 'median_section_taper_rates': None, + 'median_total_volume': 0, + 'min_number_of_sections': 0, + 'min_section_strahler_orders': None, + 'min_section_volumes': None, + 'min_total_length': 0 + } + + assert_stats_equal(res["axon"], expected_axon_wout_subtrees) + + res_df = neurom.apps.morph_stats.extract_dataframe(mixed_morph, cfg, use_subtrees=False) + + # get axon column and tranform it to look like the expected values above + values = res_df.loc[pd.IndexSlice[:, "axon"]].iloc[0, :].to_dict() + assert_stats_equal(values, expected_axon_wout_subtrees) + + + res = neurom.apps.morph_stats.extract_stats(mixed_morph, cfg, use_subtrees=True) + + expected_axon_with_subtrees = { + 'max_number_of_bifurcations': 2, + 'max_total_area': 3.4018507611950346, + 'mean_local_bifurcation_angles': 2.356194490192345, + 'mean_max_radial_distance': 4.472136, + 'mean_partition_asymmetry': 0.25, + 'mean_partition_asymmetry_length': 0.1846990320847273, + 'mean_remote_bifurcation_angles': 2.356194490192345, + 'mean_section_areas': 0.6803701522390069, + 'mean_section_bif_branch_orders': 1.5, + 'mean_section_bif_lengths': 1.2071068, + 'mean_section_bif_radial_distances': 3.9240959, + 'mean_section_branch_orders': 2.2, + 'mean_section_lengths': 1.0828427, + 'mean_section_path_distances': 2.614213538169861, + 'mean_section_radial_distances': 4.207625, + 'mean_section_term_branch_orders': 2.6666666666666665, + 'mean_section_term_lengths': 1.0, + 'mean_section_term_radial_distances': 4.396645, + 'mean_section_tortuosity': 1.0, + 'mean_sibling_ratios': 1.0, + 'mean_terminal_path_lengths': 3.0808802048365274, + 'median_diameter_power_relations': 2.0, + 'median_number_of_leaves': 3, + 'median_section_taper_rates': 8.6268466e-17, + 'median_total_volume': 0.17009254152367845, + 'min_number_of_sections': 5, + 'min_section_strahler_orders': 1, + 'min_section_volumes': 0.03141592778425469, + 'min_total_length': 5.414213538169861 + } + + assert_stats_equal(res["axon"], expected_axon_with_subtrees) + + res_df = neurom.apps.morph_stats.extract_dataframe(mixed_morph, cfg, use_subtrees=True) + + # get axon column and tranform it to look like the expected values above + values = res_df.loc[pd.IndexSlice[:, "axon"]].iloc[0, :].to_dict() + assert_stats_equal(values, expected_axon_with_subtrees) + + @pytest.fixture def population(mixed_morph): return Population([mixed_morph, mixed_morph])