forked from pytorch/rl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ddpg.py
180 lines (147 loc) · 5.74 KB
/
ddpg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""DDPG Example.
This is a simple self-contained example of a DDPG training script.
It supports state environments like MuJoCo.
The helper functions are coded in the utils.py associated with this script.
"""
import hydra
import numpy as np
import torch
import torch.cuda
import tqdm
from torchrl.envs.utils import ExplorationType, set_exploration_type
from torchrl.record.loggers import generate_exp_name, get_logger
from utils import (
make_collector,
make_ddpg_agent,
make_environment,
make_loss_module,
make_optimizer,
make_replay_buffer,
)
@hydra.main(version_base="1.1", config_path=".", config_name="config")
def main(cfg: "DictConfig"): # noqa: F821
device = torch.device(cfg.network.device)
exp_name = generate_exp_name("DDPG", cfg.env.exp_name)
logger = None
if cfg.logger.backend:
logger = get_logger(
logger_type=cfg.logger.backend,
logger_name="ddpg_logging",
experiment_name=exp_name,
wandb_kwargs={"mode": cfg.logger.mode, "config": cfg},
)
torch.manual_seed(cfg.env.seed)
np.random.seed(cfg.env.seed)
# Create Environments
train_env, eval_env = make_environment(cfg)
# Create Agent
model, exploration_policy = make_ddpg_agent(cfg, train_env, eval_env, device)
# Create Loss Module and Target Updater
loss_module, target_net_updater = make_loss_module(cfg, model)
# Make Off-Policy Collector
collector = make_collector(cfg, train_env, exploration_policy)
# Make Replay Buffer
replay_buffer = make_replay_buffer(
batch_size=cfg.optimization.batch_size,
prb=cfg.replay_buffer.prb,
buffer_size=cfg.replay_buffer.size,
device=device,
)
# Make Optimizers
optimizer_actor, optimizer_critic = make_optimizer(cfg, loss_module)
rewards = []
rewards_eval = []
# Main loop
collected_frames = 0
pbar = tqdm.tqdm(total=cfg.collector.total_frames)
r0 = None
q_loss = None
init_random_frames = cfg.collector.init_random_frames
num_updates = int(
cfg.collector.env_per_collector
* cfg.collector.frames_per_batch
* cfg.optimization.utd_ratio
)
prb = cfg.replay_buffer.prb
env_per_collector = cfg.collector.env_per_collector
frames_per_batch, frame_skip = cfg.collector.frames_per_batch, cfg.env.frame_skip
eval_iter = cfg.logger.eval_iter
eval_rollout_steps = cfg.collector.max_frames_per_traj // frame_skip
for i, tensordict in enumerate(collector):
exploration_policy.step(tensordict.numel())
# update weights of the inference policy
collector.update_policy_weights_()
if r0 is None:
r0 = tensordict["next", "reward"].sum(-1).mean().item()
pbar.update(tensordict.numel())
tensordict = tensordict.reshape(-1)
current_frames = tensordict.numel()
replay_buffer.extend(tensordict.cpu())
collected_frames += current_frames
# optimization steps
if collected_frames >= init_random_frames:
(
actor_losses,
q_losses,
) = ([], [])
for _ in range(num_updates):
# sample from replay buffer
sampled_tensordict = replay_buffer.sample().clone()
loss_td = loss_module(sampled_tensordict)
optimizer_critic.zero_grad()
optimizer_actor.zero_grad()
actor_loss = loss_td["loss_actor"]
q_loss = loss_td["loss_value"]
(actor_loss + q_loss).backward()
optimizer_critic.step()
q_losses.append(q_loss.item())
optimizer_actor.step()
actor_losses.append(actor_loss.item())
# update qnet_target params
target_net_updater.step()
# update priority
if prb:
replay_buffer.update_priority(sampled_tensordict)
rewards.append(
(i, tensordict["next", "reward"].sum().item() / env_per_collector)
)
train_log = {
"train_reward": rewards[-1][1],
"collected_frames": collected_frames,
}
if q_loss is not None:
train_log.update(
{
"actor_loss": np.mean(actor_losses),
"q_loss": np.mean(q_losses),
}
)
if logger is not None:
for key, value in train_log.items():
logger.log_scalar(key, value, step=collected_frames)
if abs(collected_frames % eval_iter) < frames_per_batch * frame_skip:
with set_exploration_type(ExplorationType.MODE), torch.no_grad():
eval_rollout = eval_env.rollout(
eval_rollout_steps,
exploration_policy,
auto_cast_to_device=True,
break_when_any_done=True,
)
eval_reward = eval_rollout["next", "reward"].sum(-2).mean().item()
rewards_eval.append((i, eval_reward))
eval_str = f"eval cumulative reward: {rewards_eval[-1][1]: 4.4f} (init: {rewards_eval[0][1]: 4.4f})"
if logger is not None:
logger.log_scalar(
"evaluation_reward", rewards_eval[-1][1], step=collected_frames
)
if len(rewards_eval):
pbar.set_description(
f"reward: {rewards[-1][1]: 4.4f} (r0 = {r0: 4.4f})," + eval_str
)
collector.shutdown()
if __name__ == "__main__":
main()