-
Notifications
You must be signed in to change notification settings - Fork 3
/
model.py
215 lines (176 loc) · 9.16 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import math
import logging
import torch
import torch.nn as nn
from torch.nn import functional as F
logger = logging.getLogger(__name__)
########################################################################################################
# MHA: Multi-head Attention + Rotary Encoding
########################################################################################################
class RotaryEmbedding(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer('inv_freq', inv_freq)
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x, seq_len=None):
if seq_len != self.seq_len_cached:
self.seq_len_cached = seq_len
t = torch.arange(seq_len, device=x.device)
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
self.cos_cached = emb.cos()
self.sin_cached = emb.sin()
return self.cos_cached, self.sin_cached
def rotate_half(x):
x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
return torch.cat((-x2, x1), -1)
@torch.jit.script
def apply_rotary_pos_emb(q, k, cos, sin):
cos, sin = cos[...,:q.shape[-2],:], sin[...,:q.shape[-2],:]
return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
class MHA(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
assert config.n_attn % config.n_head == 0
self.n_head = config.n_head
self.ctx_len = config.ctx_len
self.head_size = config.n_attn // config.n_head
self.query = nn.Linear(config.n_embd, config.n_attn)
self.key = nn.Linear(config.n_embd, config.n_attn)
self.value = nn.Linear(config.n_embd, config.n_attn)
self.register_buffer("mask", torch.tril(torch.ones(config.ctx_len, config.ctx_len)))
if self.config.ROTARY_POS_EMB:
self.rotary_ndims = int(self.head_size * 0.5)
self.rotary_emb = RotaryEmbedding(self.rotary_ndims)
self.output = nn.Linear(config.n_attn, config.n_embd)
def forward(self, x):
B, T, C = x.size()
q = self.query(x).view(B, T, self.n_head, self.head_size).transpose(1, 2) # (B, T, C) -> (B, nh, T, hs)
k = self.key(x).view(B, T, self.n_head, self.head_size).transpose(1, 2) # (B, T, C) -> (B, nh, T, hs)
v = self.value(x).view(B, T, self.n_head, self.head_size).transpose(1, 2) # (B, T, C) -> (B, nh, T, hs)
if self.config.ROTARY_POS_EMB:
q, query_pass = q[..., :self.rotary_ndims], q[..., self.rotary_ndims:]
k, key_pass = k[..., :self.rotary_ndims], k[..., self.rotary_ndims:]
cos, sin = self.rotary_emb(q, seq_len=T)
q, k = apply_rotary_pos_emb(q, k, cos, sin) # rotary encoding
q = torch.cat((q, query_pass), dim=-1)
k = torch.cat((k, key_pass), dim=-1)
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) # self-attention: (B, nh, T, hs) * (B, nh, hs, T) -> (B, nh, T, T)
att = att.masked_fill(self.mask[:T,:T] == 0, float('-inf')) # causal mask
att = F.softmax(att, dim = -1) # softmax
x = att @ v # (B, nh, T, T) * (B, nh, T, hs) -> (B, nh, T, hs)
x = x.transpose(1, 2).contiguous().view(B, T, -1) # (B, nh, T, hs) -> (B, T, nh, hs) -> (B, T, C)
x = self.output(x)
return x
class GeGLU(torch.nn.Module):
def __init__(self, config):
super().__init__()
hidden_sz = 3 * config.n_ffn
self.key = nn.Linear(config.n_embd, hidden_sz)
self.value = nn.Linear(config.n_embd, hidden_sz)
self.weight = nn.Linear(hidden_sz, config.n_embd)
def forward(self, x):
B, T, C = x.size()
k = self.key(x)
v = self.value(x)
y = self.weight(F.gelu(k) * v)
return y
########################################################################################################
# The GPT Model with our blocks
########################################################################################################
class GPTConfig:
def __init__(self, vocab_size, ctx_len, **kwargs):
self.vocab_size = vocab_size
self.ctx_len = ctx_len
for k,v in kwargs.items():
setattr(self, k, v)
class Block(nn.Module):
def __init__(self, config, layer_id):
super().__init__()
self.config = config
self.layer_id = layer_id
if (not self.config.USE_POST_LN) and (self.config.USE_SMALL_EMB) and (self.layer_id == 0): # LN(SmallInit(Emb))
self.lnPre = nn.LayerNorm(config.n_embd)
self.ln1 = nn.LayerNorm(config.n_embd)
self.ln2 = nn.LayerNorm(config.n_embd)
self.att = MHA(config)
self.ffn = GeGLU(config)
def forward(self, x):
if self.config.USE_POST_LN:
x = self.ln1(x)
x = x + self.att(x)
x = self.ln2(x)
x = x + self.ffn(x)
else:
if self.config.USE_SMALL_EMB and self.layer_id == 0: # LN(SmallInit(Emb))
x = self.lnPre(x)
x = x + self.att(self.ln1(x))
x = x + self.ffn(self.ln2(x))
return x
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.ctx_len = config.ctx_len
self.emb = nn.Embedding(config.vocab_size, config.n_embd)
if not self.config.ROTARY_POS_EMB:
self.pos_emb = nn.Parameter(torch.zeros(1, config.ctx_len, config.n_embd)) # note: i initialize abs.pos.emb to zero
self.blocks = nn.Sequential(*[Block(config, i) for i in range(config.n_layer)])
self.ln_out = nn.LayerNorm(config.n_embd)
self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.apply(self._init_weights)
logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters()))
def _init_weights(self, module):
if isinstance(module, (nn.Linear)):
module.weight.data.normal_(mean=0.0, std=0.02)
if isinstance(module, (nn.Embedding)):
if self.config.USE_SMALL_EMB:
nn.init.uniform_(module.weight, a=-1e-4, b=1e-4) # SmallInit(Emb)
else:
module.weight.data.normal_(mean=0.0, std=0.02)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
def configure_optimizers(self, train_config):
decay = set() # separate out all parameters to those that will and won't experience regularizing weight decay
no_decay = set()
whitelist_weight_modules = (nn.Linear, )
blacklist_weight_modules = (nn.LayerNorm, nn.Embedding)
for mn, m in self.named_modules():
for pn, p in m.named_parameters():
fpn = '%s.%s' % (mn, pn) if mn else pn # full param name
if pn.endswith('bias') or ('time' in fpn) or ('head' in fpn) or ('scale' in fpn) or ('pos_emb' in fpn):
no_decay.add(fpn)
elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules):
decay.add(fpn)
elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules):
no_decay.add(fpn)
param_dict = {pn: p for pn, p in self.named_parameters()} # validate that we considered every parameter
inter_params = decay & no_decay
union_params = decay | no_decay
assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), )
assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \
% (str(param_dict.keys() - union_params), )
optim_groups = [
{"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": train_config.weight_decay},
{"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0},
]
optimizer = torch.optim.AdamW(optim_groups, lr=train_config.learning_rate, betas=train_config.betas, eps=train_config.eps)
return optimizer
def forward(self, idx, targets=None):
B, T = idx.size()
assert T <= self.ctx_len, "Cannot forward, because len(input) > model ctx_len."
x = self.emb(idx)
if not self.config.ROTARY_POS_EMB:
x = x + self.pos_emb[:, :T, :]
x = self.blocks(x)
x = self.ln_out(x)
x = self.head(x)
# print(self.emb.weight.detach().cpu().numpy()) # <-------- Show embedding matrix changes
loss = None
if targets is not None:
loss = F.cross_entropy(x.view(-1, x.size(-1)), targets.view(-1))
return x, loss