-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathLecture-bioc-introduction.Rmd
706 lines (558 loc) · 24.4 KB
/
Lecture-bioc-introduction.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
---
title: "2. Introduction to _Bioconductor_"
author: "Valerie Obenchain ([email protected])<br />
Lori Shepherd ([email protected])<br />
Martin Morgan ([email protected])<br />
Stanford University, Stanford, CA<br />
25 - 26 June, 2016"
output:
BiocStyle::html_document:
toc: true
toc_depth: 2
vignette: >
% \VignetteIndexEntry{2. Introduction to _Bioconductor_}
% \VignetteEngine{knitr::rmarkdown}
---
```{r style, echo = FALSE, results = 'asis'}
BiocStyle::markdown()
options(width=100, max.print=1000)
knitr::opts_chunk$set(
eval=as.logical(Sys.getenv("KNITR_EVAL", "TRUE")),
cache=as.logical(Sys.getenv("KNITR_CACHE", "TRUE")))
```
```{r packages, eval=TRUE, echo=FALSE, warning=FALSE, message=FALSE}
suppressPackageStartupMessages({
library(BioC2016Introduction)
library(SummarizedExperiment)
library(airway)
})
```
The material in this course requires R version 3.3 and Bioconductor
version 3.4
```{r configure-test}
stopifnot(
getRversion() >= '3.3' && getRversion() < '3.4',
BiocInstaller::biocVersion() == "3.4"
)
```
Version: `r packageDescription("BioC2016Introduction")$Version`<br />
Compiled: `r date()`
# _Bioconductor_
Physically
- Collection of 1211 software, 916 annotation and 293 experimental
data R packages.
- Web site (http://bioconductor.org) for package distribution and
other resources.
- Support site (https://support.bioconductor.org) for user questions.
Conceptually
- Analysis and comprehension of high throughput genomic data
# Core principles
## High-throughput analysis needs statistics!
Volume of data
Type of research question
- Designed experiments
- Population samples
- ...
Technological artifacts
- Differences in sequencing depth between samples
- Bias in the genomic regions sampled
## Scientific research needs to be reproducible
### A motivating case study
- Cisplatin-resistant non-small-cell lung cancer gene sets
- Hsu et al. 2007 J Clin Oncol 25:
[4350-4357](http://jco.ascopubs.org/content/25/28/4350.abstract)
[retracted](http://jco.ascopubs.org/content/28/35/5229.long)
![](our_figures/HsuEtAl-F1-large-a.jpg)
- Baggerly & Coombes 2009 Ann Appl Stat
[3: 1309-1334](http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aoas/1267453942)
![](our_figures/BaggerlyCoombes2009-fig2a.jpg)
Lessons
- Record each step of the analysis
- Coordinated manipulation of feature, sample, and assay data
- Informative labels on visualizations
### How to be reproducible?
- Use software 'objects' that take care of some of the tedious
book-keeping
- Document our analysis in scripts and 'markdown' documents
### Example: `SummarizedExperiment`
![](our_figures/SE_Description.png)
Underlying data is a matrix
- Regions of interest (e.g., genes) x samples
- `assay()` -- e.g., matrix of counts of reads overlapping genes
Include information about rows
- `rowRanges()` -- gene identifiers, or _genomic ranges_ describing
the coordinates of each gene
Include information about columns
- `colData()` -- describing samples, experimental design, ...
```{r airway-SummarizedExperiment}
library(airway) # An 'ExperimentData' package...
data(airway) # ...with a sample data set...
airway # ...that is a SummarizedExperiment
head(assay(airway)) # contains a matrix of counts
head(rowRanges(airway)) # information about the genes...
colData(airway)[, 1:3] # ...and samples
## coordinated subsetting
untrt <- airway[, airway$dex == 'untrt']
head(assay(untrt))
colData(untrt)[, 1:3]
```
## We can 'stand on the shoulders of giants'
Packages!
- Discover and navigate via [biocViews][]
- Package 'landing page'
- Title, author / maintainer, short description, citation,
installation instructions, ..., download statistics
- All user-visible functions have help pages, most with runnable
examples
- 'Vignettes' an important feature in Bioconductor -- narrative
documents illustrating how to use the package, with integrated code
- 'Workflows' make use of multiple packages for complete end-to-end
analysis
- 'Release' (every six months) and 'devel' branches
- [Support site](https://support.bioconductor.org);
[videos](https://www.youtube.com/user/bioconductor), [recent
courses](http://bioconductor.org/help/course-materials/)
## We should explore our data
Visualization
Inter-operability between packages
- Made easier by using similar data structures
Examples (details later)
- `SummarizedExperiment`
- `DNAStringSet`
- `GenomicRanges`
## Comprehension is more than statistical analysis
Annotation
- Mapping from technical to user-friendly identifiers
- Assigning genes to pathways
- Placing our results in the context of large-scale analyses
Objects
- Represent complicated data types
- Foster interoperability
- S4 object system
- Introspection: `methods()`, `getClass()`, `selectMethod()`
- 'accessors' and other documented functions / methods for
manipulation, rather than direct access to the object structure
- Interactive help
- `method?"substr,<tab>"` to select help on methods, `class?D<tab>`
for help on classes
## A sequence analysis package tour
![Alt Sequencing Ecosystem](our_figures/SequencingEcosystem.png)
This very open-ended topic points to some of the most prominent
Bioconductor packages for sequence analysis. Use the opportunity in
this lab to explore the package vignettes and help pages highlighted
below; many of the material will be covered in greater detail in
subsequent labs and lectures.
Basics
- Bioconductor packages are listed on the [biocViews][] page. Each
package has 'biocViews' (tags from a controlled vocabulary)
associated with it; these can be searched to identify appropriately
tagged packages, as can the package title and author.
- Each package has a 'landing page', e.g., for
[GenomicRanges][]. Visit this landing page, and note the
description, authors, and installation instructions. Packages are
often written up in the scientific literature, and if available the
corresponding citation is present on the landing page. Also on the
landing page are links to the vignettes and reference manual and, at
the bottom, an indication of cross-platform availability and
download statistics.
- A package needs to be installed once, using the instructions on the
landing page. Once installed, the package can be loaded into an R
session
```{r require}
library(GenomicRanges)
```
and the help system queried interactively, as outlined above:
```{r help, eval=FALSE}
help(package="GenomicRanges")
vignette(package="GenomicRanges")
vignette(package="GenomicRanges", "GenomicRangesHOWTOs")
?GRanges
```
Domain-specific analysis -- explore the landing pages, vignettes, and
reference manuals of two or three of the following packages.
- Important packages for analysis of differential expression include
[edgeR][] and [DESeq2][]; both have excellent vignettes for
exploration. Additional research methods embodied in Bioconductor
packages can be discovered by visiting the [biocViews][] web page,
searching for the 'DifferentialExpression' view term, and narrowing
the selection by searching for 'RNA seq' and similar.
- Popular ChIP-seq packages include [csaw][] an d[DiffBind][] for
comparison of peaks across samples, [ChIPQC][] for quality
assessment, and [ChIPseeker][] for annotating results (e.g.,
discovering nearby genes). What other ChIP-seq packages are listed
on the [biocViews][] page?
- Working with called variants (VCF files) is facilitated by packages
such as [VariantAnnotation][], [VariantFiltering][], [ensemblVEP][],
and [SomaticSignatures][]; packages for calling variants include,
e.g., [h5vc][] and [VariantTools][].
- Several packages identify copy number variants from sequence data,
including [cn.mops][]; from the [biocViews][] page, what other copy
number packages are available? The [CNTools][] package provides some
useful facilities for comparison of segments across samples.
- Microbiome and metagenomic analysis is facilitated by packages such
as [phyloseq][] and [metagenomeSeq][].
- Metabolomics, chemoinformatics, image analysis, and many other
high-throughput analysis domains are also represented in
Bioconductor; explore these via biocViews and title searches.
Working with sequences, alignments, common web file formats, and raw
data; these packages rely very heavily on the [IRanges][] /
[GenomicRanges][] infrastructure that we will encounter later in the
course.
- The [Biostrings][] package is used to represent DNA and other
sequences, with many convenient sequence-related functions. Check
out the functions documented on the help page `?consensusMatrix`,
for instance. Also check out the [BSgenome][] package for working
with whole genome sequences, e.g., `?"getSeq,BSgenome-method"`
- The [GenomicAlignments][] package is used to input reads aligned to
a reference genome. See for instance the `?readGAlignments` help
page and `vigentte(package="GenomicAlignments",
"summarizeOverlaps")`
- [rtracklayer][]'s `import` and `export` functions can read in many
common file types, e.g., BED, WIG, GTF, ..., in addition to querying
and navigating the UCSC genome browser. Check out the `?import` page
for basic usage.
- The [ShortRead][] and [Rsamtools][] packages can be used for
lower-level access to FASTQ and BAM files, respectively. Explore the
[ShortRead vignette](http://bioconductor.org/packages/release/bioc/vignettes/ShortRead/inst/doc/Overview.pdf)
and Scalable Genomics labs to see approaches to effectively
processing the large files.
Visualization
- The [Gviz][] package provides great tools for visualizing local
genomic coordinates and associated data.
- [epivizr][] drives the [epiviz](http://epiviz.cbcb.umd.edu/) genome
browser from within R; [rtracklayer][] provides easy ways to
transfer data to and manipulate UCSC browser sessions.
- Additionl packages include [ggbio][], [OmicCircos][], ...
## DNA or amino acid sequences: _Biostrings_, _ShortRead_, _BSgenome_
Classes
- XString, XStringSet, e.g., DNAString (genomes),
DNAStringSet (reads)
Methods --
- [Cheat sheat](http://bioconductor.org/packages/release/bioc/vignettes/Biostrings/inst/doc/BiostringsQuickOverview.pdf)
- Manipulation, e.g., `reverseComplement()`
- Summary, e.g., `letterFrequency()`
- Matching, e.g., `matchPDict()`, `matchPWM()`
Related packages
- [BSgenome][]
- Whole-genome representations
- Model and custom
- [ShortRead][]
- FASTQ files
Example
- Whole-genome sequences are distrubuted by ENSEMBL, NCBI, and others
as FASTA files; model organism whole genome sequences are packaged
into more user-friendly `BSgenome` packages. The following
calculates GC content across chr14.
```{r BSgenome-require, message=FALSE}
require(BSgenome.Hsapiens.UCSC.hg19)
chr14_range = GRanges("chr14", IRanges(1, seqlengths(Hsapiens)["chr14"]))
chr14_dna <- getSeq(Hsapiens, chr14_range)
letterFrequency(chr14_dna, "GC", as.prob=TRUE)
```
## Ranges: _GenomicRanges_, _IRanges_
Ranges represent:
- Data, e.g., aligned reads, ChIP peaks, SNPs, CpG islands, ...
- Annotations, e.g., gene models, regulatory elements, methylated
regions
- Ranges are defined by chromosome, start, end, and strand
- Often, metadata is associated with each range, e.g., quality of
alignment, strength of ChIP peak
Many common biological questions are range-based
- What reads overlap genes?
- What genes are ChIP peaks nearest?
- ...
The [GenomicRanges][] package defines essential classes and methods
- `GRanges`
![Alt ](our_figures/GRanges.png)
- `GRangesList`
![Alt ](our_figures/GRangesList.png)
### Range operations
![Alt Ranges Algebra](our_figures/RangeOperations.png)
Ranges
- IRanges
- `start()` / `end()` / `width()`
- List-like -- `length()`, subset, etc.
- 'metadata', `mcols()`
- GRanges
- 'seqnames' (chromosome), 'strand'
- `Seqinfo`, including `seqlevels` and `seqlengths`
Intra-range methods
- Independent of other ranges in the same object
- GRanges variants strand-aware
- `shift()`, `narrow()`, `flank()`, `promoters()`, `resize()`,
`restrict()`, `trim()`
- See `?"intra-range-methods"`
Inter-range methods
- Depends on other ranges in the same object
- `range()`, `reduce()`, `gaps()`, `disjoin()`
- `coverage()` (!)
- see `?"inter-range-methods"`
Between-range methods
- Functions of two (or more) range objects
- `findOverlaps()`, `countOverlaps()`, ..., `%over%`, `%within%`,
`%outside%`; `union()`, `intersect()`, `setdiff()`, `punion()`,
`pintersect()`, `psetdiff()`
Example
```{r ranges, message=FALSE}
require(GenomicRanges)
gr <- GRanges("A", IRanges(c(10, 20, 22), width=5), "+")
shift(gr, 1) # 1-based coordinates!
range(gr) # intra-range
reduce(gr) # inter-range
coverage(gr)
setdiff(range(gr), gr) # 'introns'
```
IRangesList, GRangesList
- List: all elements of the same type
- Many *List-aware methods, but a common 'trick': apply a vectorized
function to the unlisted representaion, then re-list
grl <- GRangesList(...)
orig_gr <- unlist(grl)
transformed_gr <- FUN(orig)
transformed_grl <- relist(, grl)
Reference
- Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M, et al. (2013)
Software for Computing and Annotating Genomic Ranges. PLoS Comput
Biol 9(8): e1003118. doi:10.1371/journal.pcbi.1003118
## Aligned reads: _GenomicAlignments_, _Rsamtools_
Classes -- GenomicRanges-like behaivor
- GAlignments, GAlignmentPairs, GAlignmentsList
- SummarizedExperiment
- Matrix where rows are indexed by genomic ranges, columns by a
DataFrame.
Methods
- `readGAlignments()`, `readGAlignmentsList()`
- Easy to restrict input, iterate in chunks
- `summarizeOverlaps()`
Example
- Find reads supporting the junction identified above, at position
19653707 + 66M = 19653773 of chromosome 14
```{r bam-require}
require(GenomicRanges)
require(GenomicAlignments)
require(Rsamtools)
## our 'region of interest'
roi <- GRanges("chr14", IRanges(19653773, width=1))
## sample data
require('RNAseqData.HNRNPC.bam.chr14')
bf <- BamFile(RNAseqData.HNRNPC.bam.chr14_BAMFILES[[1]], asMates=TRUE)
## alignments, junctions, overlapping our roi
paln <- readGAlignmentsList(bf)
j <- summarizeJunctions(paln, with.revmap=TRUE)
j_overlap <- j[j %over% roi]
## supporting reads
paln[j_overlap$revmap[[1]]]
```
## Called variants: _VariantAnnotation_, _VariantFiltering_
Classes -- GenomicRanges-like behavior
- VCF -- 'wide'
- VRanges -- 'tall'
Functions and methods
- I/O and filtering: `readVcf()`, `readGeno()`, `readInfo()`,
`readGT()`, `writeVcf()`, `filterVcf()`
- Annotation: `locateVariants()` (variants overlapping ranges),
`predictCoding()`, `summarizeVariants()`
- SNPs: `genotypeToSnpMatrix()`, `snpSummary()`
Example
- Read variants from a VCF file, and annotate with respect to a known
gene model
```{r vcf, message=FALSE}
## input variants
require(VariantAnnotation)
fl <- system.file("extdata", "chr22.vcf.gz", package="VariantAnnotation")
vcf <- readVcf(fl, "hg19")
seqlevels(vcf) <- "chr22"
## known gene model
require(TxDb.Hsapiens.UCSC.hg19.knownGene)
coding <- locateVariants(rowRanges(vcf),
TxDb.Hsapiens.UCSC.hg19.knownGene,
CodingVariants())
head(coding)
```
Related packages
- [ensemblVEP][]
- Forward variants to Ensembl Variant Effect Predictor
- [VariantTools][], [h5vc][]
- Call variants
- [VariantFiltering][]
- Filter variants using criteria such as coding consequence, MAF,
..., inheritance model
Reference
- Obenchain, V, Lawrence, M, Carey, V, Gogarten, S, Shannon, P, and
Morgan, M. VariantAnnotation: a Bioconductor package for exploration
and annotation of genetic variants. Bioinformatics, first published
online March 28, 2014
[doi:10.1093/bioinformatics/btu168](http://bioinformatics.oxfordjournals.org/content/early/2014/04/21/bioinformatics.btu168)
## Integrated data representations: _SummarizedExperiment_
![](our_figures/SE_Description.png)
[SummarizedExperiment][]
- 'feature' x 'sample' `assays()`
- `colData()` data frame for desciption of samples
- `rowRanges()` _GRanges_ / _GRangeList_ or data frame for description
of features
- `exptData()` to describe the entire object
```{r SummarizedExperiment}
library(SummarizedExperiment)
library(airway)
data(airway)
airway
colData(airway)
airway[, airway$dex %in% "trt"]
```
## Annotation: _org_, _TxDb_, _AnnotationHub_, _biomaRt_, ...
- _Bioconductor_ provides extensive access to 'annotation' resources
(see the [AnnotationData][] biocViews hierarchy); some interesting
examples to explore during this lab include:
- [biomaRt][], [PSICQUIC][], [KEGGREST][] and other packages for
querying on-line resources; each of these have informative vignettes.
- [AnnotationDbi][] is a cornerstone of the
[Annotation Data][AnnotationData] packages provided by Bioconductor.
- **org** packages (e.g., [org.Hs.eg.db][]) contain maps between
different gene identifiers, e.g., ENTREZ and SYMBOL. The basic
interface to these packages is described on the help page `?select`
- **TxDb** packages (e.g., [TxDb.Hsapiens.UCSC.hg19.knownGene][])
contain gene models (exon coordinates, exon / transcript
relationships, etc) derived from common sources such as the hg19
knownGene track of the UCSC genome browser. These packages can be
queried, e.g., as described on the `?exonsBy` page to retrieve all
exons grouped by gene or transcript.
- **BSgenome** packages (e.g., [BSgenome.Hsapiens.UCSC.hg19][])
contain whole genomes of model organisms.
- [VariantAnnotation][] and [ensemblVEP][] provide access to sequence
annotation facilities, e.g., to identify coding variants; see the
[Introduction to VariantAnnotation](http://bioconductor.org/packages/release/bioc/vignettes/ShortRead/inst/doc/Overview.pdf)
vignette for a brief introduction.
- Take a quick look at the [annotation work
flow](http://bioconductor.org/help/workflows/annotation/annotation/)
on the Bioconductor web site.
## Scalable computing
1. Efficient _R_ code
- Vectorize!
- Reuse others' work Know -- [DESeq2][], [GenomicRanges][],
[Biostrings][], [dplyr][], [data.table][], [Rcpp][]
2. Iteration
- Chunk-wise
- `open()`, read chunk(s), `close()`.
- e.g., `yieldSize` argument to `Rsamtools::BamFile()`
3. Restriction
- Limit to columns and / or rows of interest
- Exploit domain-specific formats, e.g., BAM files and
`Rsamtools::ScanBamParam()`
- Use a data base
4. Sampling
- Iterate through large data, retaining a manageable sample, e.g.,
`ShortRead::FastqSampler()`
5. Parallel evaluation
- **After** writing efficient code
- Typically, `lapply()`-like operations
- Cores on a single machine ('easy'); clusters (more tedious);
clouds
Parallel evaluation in _Bioconductor_
- [BiocParallel][] -- `bplapply()` for `lapply()`-like functions,
increasingly used by package developers to provide easy, standard
way of gaining parallel evaluation.
- [GenomicFiles][] -- Framework for working on groups of files,
ranges, or ranges x files
- Bioconductor [AMI][] (Amazon Machine Instance) including
pre-configured StarCluster, and [docker] containers.
# Resources
_R_ / _Bioconductor_
- [Web site][Bioconductor] -- install, learn, use, develop _R_ /
_Bioconductor_ packages
- [Support](http://support.bioconductor.org) -- seek help and
guidance; also
[StackOverflow](http://stackoverflow.com/questions/tagged/r) for _R_
programming questions
- [biocViews](http://bioconductor.org/packages/release/BiocViews.html)
-- discover packages
- Package landing pages, e.g.,
[GenomicRanges](http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html),
including title, description, authors, installation instructions,
vignettes (e.g., GenomicRanges '[How
To](http://bioconductor.org/packages/release/bioc/vignettes/GenomicRanges/inst/doc/GenomicRangesHOWTOs.pdf)'),
etc.
- [Course](http://bioconductor.org/help/course-materials/) and other
[help](http://bioconductor.org/help/) material (e.g., videos, EdX
course, community blogs, ...)
Publications (General _Bioconductor_)
- Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M, et al. (2013)
Software for Computing and Annotating Genomic Ranges. PLoS Comput
Biol 9(8): e1003118. doi:
[10.1371/journal.pcbi.1003118][GRanges.bib]
- Lawrence, M, and Morgan, M. 2014. Scalable Genomics with R and
Bioconductor. Statistical Science 2014, Vol. 29, No. 2,
214-226. [http://arxiv.org/abs/1409.2864v1][Scalable.bib]
Other
- Lawrence, M. 2014. Software for Enabling Genomic Data
Analysis. Bioc2014 conference [slides][Lawrence.bioc2014.bib].
Acknowledgements
The research reported in this presentation was supported by the
National Cancer Institute and the National Human Genome Research
Institute of the National Institutes of Health under Award numbers
U24CA180996 and U41HG004059, and the National Science Foundation
under Award number 1247813. The content is solely the responsibility
of the authors and does not necessarily represent the official views
of the National Institutes of Health or the National Science
Foundation.
## `sessionInfo()`
```{r sessionInfo}
sessionInfo()
```
<!-- Bibliography -->
[R]: http://r-project.org
[Bioconductor]: http://bioconductor.org
[GRanges.bib]: https://doi.org/10.1371/journal.pcbi.1003118
[Scalable.bib]: http://arxiv.org/abs/1409.2864
[Lawrence.bioc2014.bib]:
http://bioconductor.org/help/course-materials/2014/BioC2014/Lawrence_Talk.pdf
[AnnotationData]: http://bioconductor.org/packages/release/BiocViews.html#___AnnotationData
[biocViews]: http://bioconductor.org/packages/release/BiocViews.html#___Software
[AnnotationDbi]: http://bioconductor.org/packages/AnnotationDbi
[AnnotationHub]: http://bioconductor.org/packages/AnnotationHub
[BSgenome.Hsapiens.UCSC.hg19]: http://bioconductor.org/packages/BSgenome.Hsapiens.UCSC.hg19
[BSgenome]: http://bioconductor.org/packages/BSgenome
[BiocParallel]: http://bioconductor.org/packages/BiocParallel
[Biostrings]: http://bioconductor.org/packages/Biostrings
[CNTools]: http://bioconductor.org/packages/CNTools
[ChIPQC]: http://bioconductor.org/packages/ChIPQC
[ChIPseeker]: http://bioconductor.org/packages/ChIPseeker
[DESeq2]: http://bioconductor.org/packages/DESeq2
[DiffBind]: http://bioconductor.org/packages/DiffBind
[GenomicAlignments]: http://bioconductor.org/packages/GenomicAlignments
[GenomicFiles]: http://bioconductor.org/packages/GenomicFiles
[GenomicRanges]: http://bioconductor.org/packages/GenomicRanges
[Homo.sapiens]: http://bioconductor.org/packages/Homo.sapiens
[IRanges]: http://bioconductor.org/packages/IRanges
[KEGGREST]: http://bioconductor.org/packages/KEGGREST
[PSICQUIC]: http://bioconductor.org/packages/PSICQUIC
[Rsamtools]: http://bioconductor.org/packages/Rsamtools
[Rsubread]: http://bioconductor.org/packages/Rsubread
[ShortRead]: http://bioconductor.org/packages/ShortRead
[SomaticSignatures]: http://bioconductor.org/packages/SomaticSignatures
[SummarizedExperiment]: http://bioconductor.org/packages/SummarizedExperiment
[TxDb.Hsapiens.UCSC.hg19.knownGene]: http://bioconductor.org/packages/TxDb.Hsapiens.UCSC.hg19.knownGene
[VariantAnnotation]: http://bioconductor.org/packages/VariantAnnotation
[VariantFiltering]: http://bioconductor.org/packages/VariantFiltering
[VariantTools]: http://bioconductor.org/packages/VariantTools
[biomaRt]: http://bioconductor.org/packages/biomaRt
[cn.mops]: http://bioconductor.org/packages/cn.mops
[csaw]: http://bioconductor.org/packages/csaw
[edgeR]: http://bioconductor.org/packages/edgeR
[ensemblVEP]: http://bioconductor.org/packages/ensemblVEP
[h5vc]: http://bioconductor.org/packages/h5vc
[limma]: http://bioconductor.org/packages/limma
[metagenomeSeq]: http://bioconductor.org/packages/metagenomeSeq
[org.Hs.eg.db]: http://bioconductor.org/packages/org.Hs.eg.db
[org.Sc.sgd.db]: http://bioconductor.org/packages/org.Sc.sgd.db
[phyloseq]: http://bioconductor.org/packages/phyloseq
[rtracklayer]: http://bioconductor.org/packages/rtracklayer
[snpStats]: http://bioconductor.org/packages/snpStats
[Gviz]: http://bioconductor.org/packages/Gviz
[epivizr]: http://bioconductor.org/packages/epivizr
[ggbio]: http://bioconductor.org/packages/ggbio
[OmicCircos]: http://bioconductor.org/packages/OmicCircos
[dplyr]: https://cran.r-project.org/package=dplyr
[data.table]: https://cran.r-project.org/package=data.table
[Rcpp]: https://cran.r-project.org/package=Rcpp
[AMI]: http://bioconductor.org/help/bioconductor-cloud-ami/
[docker]: http://bioconductor.org/help/docker/