-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathL3-bioc-data-representation.Rmd
653 lines (514 loc) · 24.8 KB
/
L3-bioc-data-representation.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
---
title: "Lab 1.3: Data Representations"
output:
BiocStyle::html_document:
toc: true
vignette: >
% \VignetteIndexEntry{Lab 3: Data Represenations}
% \VignetteEngine{knitr::rmarkdown}
---
```{r style, echo = FALSE, results = 'asis'}
BiocStyle::markdown()
```
```{r setup, echo=FALSE}
knitr::opts_chunk$set(cache=TRUE)
suppressPackageStartupMessages({
library(GenomicRanges)
})
```
Authors: Valerie Obenchain (<a
href="mailto:[email protected]">[email protected]</a>),
Lori Shepherd (<a
href="mailto:[email protected]">[email protected]</a>),
Martin Morgan (<a
href="mailto:[email protected]">[email protected]</a>)
<br />
Date: 25 June, 2016<br />
# Classes, methods, and packages
This section focuses on classes, methods, and packages, with the goal
being to learn to navigate the help system and interactive discovery
facilities.
## Motivation
Sequence analysis is specialized
- Large data needs to be processed in a memory- and time-efficient manner
- Specific algorithms have been developed for the unique
characteristics of sequence data
Additional considerations
- Re-use of existing, tested code is easier to do and less error-prone
than re-inventing the wheel.
- Interoperability between packages is easier when the packages share
similar data structures.
Solution: use well-defined _classes_ to represent complex data;
_methods_ operate on the classes to perform useful functions. Classes
and methods are placed together and distributed as _packages_ so that
we can all benefit from the hard work and tested code of others.
# Case study: _IRanges_ and _GRanges_
The [IRanges][] package defines an important class for specifying
integer ranges, e.g.,
```{r iranges}
library(IRanges)
ir <- IRanges(start=c(10, 20, 30), width=5)
ir
```
There are many interesting operations to be performed on ranges, e.g,
`flank()` identifies adjacent ranges
```{r iranges-flank}
flank(ir, 3)
```
The `IRanges` class is part of a class hierarchy. To see this, ask R for
the class of `ir`, and for the class definition of the `IRanges` class
```{r iranges-class}
class(ir)
getClass(class(ir))
```
Notice that `IRanges` extends the `Ranges` class. Now try entering
`?flank` (`?"flank,<tab>"` if not using _RStudio, where `<tab>` means
to press the tab key to ask for tab completion). You can see that
there are help pages for `flank` operating on several different
classes. Select the completion
```{r iranges-flank-method, eval=FALSE}
?"flank,Ranges-method"
```
and verify that you're at the page that describes the method relevant
to an `IRanges` instance. Explore other range-based operations.
The [GenomicRanges][] package extends the notion of ranges to include
features relevant to application of ranges in sequence analysis,
particularly the ability to associate a range with a sequence name
(e.g., chromosome) and a strand. Create a `GRanges` instance based on
our `IRanges` instance, as follows
```{r granges}
library(GenomicRanges)
gr <- GRanges(c("chr1", "chr1", "chr2"), ir, strand=c("+", "-", "+"))
gr
```
The notion of flanking sequence has a more nuanced meaning in
biology. In particular we might expect that flanking sequence on the
`+` strand would precede the range, but on the minus strand would
follow it. Verify that `flank` applied to a `GRanges` object has this
behavior.
```{r granges-flank}
flank(gr, 3)
```
Discover what classes `GRanges` extends, find the help page
documenting the behavior of `flank` when applied to a `GRanges` object,
and verify that the help page documents the behavior we just observed.
```{r granges-class}
class(gr)
getClass(class(gr))
```
```{r granges-flank-method, eval=FALSE}
?"flank,GenomicRanges-method"
```
Notice that the available `flank()` methods have been augmented by the
methods defined in the _GenomicRanges_ package.
It seems like there might be a number of helpful methods available for
working with genomic ranges; we can discover some of these from the
command line, indicating that the methods should be on the current
`search()` path
```{r granges-methods, eval=FALSE}
showMethods(class="GRanges", where=search())
```
Use `help()` to list the help pages in the `GenomicRanges` package,
and `vignettes()` to view and access available vignettes; these are
also available in the Rstudio 'Help' tab.
```{r granges-man-and-vignettes, eval=FALSE}
help(package="GenomicRanges")
vignette(package="GenomicRanges")
vignette(package="GenomicRanges", "GenomicRangesHOWTOs")
```
# High-throughput sequence data
The following sections briefly summarize some of the most important
file types in high-throughput sequence analysis. _Briefly_ review
these, or those that are most relevant to your research, before
starting on the section [Data Representation in _R_ /
_Bioconductor_](#data-representation-in-r-bioconductor)
![Alt Files and the Bioconductor packages that input them](our_figures/FilesToPackages.png)
## DNA / amino acid sequences: FASTA files
Input & manipulation: [Biostrings][]
>NM_078863_up_2000_chr2L_16764737_f chr2L:16764737-16766736
gttggtggcccaccagtgccaaaatacacaagaagaagaaacagcatctt
gacactaaaatgcaaaaattgctttgcgtcaatgactcaaaacgaaaatg
...
atgggtatcaagttgccccgtataaaaggcaagtttaccggttgcacggt
>NM_001201794_up_2000_chr2L_8382455_f chr2L:8382455-8384454
ttatttatgtaggcgcccgttcccgcagccaaagcactcagaattccggg
cgtgtagcgcaacgaccatctacaaggcaatattttgatcgcttgttagg
...
## Reads: FASTQ files
Input & manipulation: [ShortRead][] `readFastq()`, `FastqStreamer()`,
`FastqSampler()`
@ERR127302.1703 HWI-EAS350_0441:1:1:1460:19184#0/1
CCTGAGTGAAGCTGATCTTGATCTACGAAGAGAGATAGATCTTGATCGTCGAGGAGATGCTGACCTTGACCT
+
HHGHHGHHHHHHHHDGG<GDGGE@GDGGD<?B8??ADAD<BE@EE8EGDGA3CB85*,77@>>CE?=896=:
@ERR127302.1704 HWI-EAS350_0441:1:1:1460:16861#0/1
GCGGTATGCTGGAAGGTGCTCGAATGGAGAGCGCCAGCGCCCCGGCGCTGAGCCGCAGCCTCAGGTCCGCCC
+
DE?DD>ED4>EEE>DE8EEEDE8B?EB<@3;BA79?,881B?@73;1?########################
- Quality scores: 'phred-like', encoded. See
[wikipedia](http://en.wikipedia.org/wiki/FASTQ_format#Encoding)
## Aligned reads: BAM files (e.g., ERR127306_chr14.bam)
Input & manipulation: 'low-level' [Rsamtools][], `scanBam()`,
`BamFile()`; 'high-level' [GenomicAlignments][]
- Header
@HD VN:1.0 SO:coordinate
@SQ SN:chr1 LN:249250621
@SQ SN:chr10 LN:135534747
@SQ SN:chr11 LN:135006516
...
@SQ SN:chrY LN:59373566
@PG ID:TopHat VN:2.0.8b CL:/home/hpages/tophat-2.0.8b.Linux_x86_64/tophat --mate-inner-dist 150 --solexa-quals --max-multihits 5 --no-discordant --no-mixed --coverage-search --microexon-search --library-type fr-unstranded --num-threads 2 --output-dir tophat2_out/ERR127306 /home/hpages/bowtie2-2.1.0/indexes/hg19 fastq/ERR127306_1.fastq fastq/ERR127306_2.fastq
- Alignments: ID, flag, alignment and mate
ERR127306.7941162 403 chr14 19653689 3 72M = 19652348 -1413 ...
ERR127306.22648137 145 chr14 19653692 1 72M = 19650044 -3720 ...
ERR127306.933914 339 chr14 19653707 1 66M120N6M = 19653686 -213 ...
ERR127306.11052450 83 chr14 19653707 3 66M120N6M = 19652348 -1551 ...
ERR127306.24611331 147 chr14 19653708 1 65M120N7M = 19653675 -225 ...
ERR127306.2698854 419 chr14 19653717 0 56M120N16M = 19653935 290 ...
ERR127306.2698854 163 chr14 19653717 0 56M120N16M = 19653935 2019 ...
- Alignments: sequence and quality
... GAATTGATCAGTCTCATCTGAGAGTAACTTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCC *'%%%%%#&&%''#'&%%%)&&%%$%%'%%'&*****$))$)'')'%)))&)%%%%$'%%%%&"))'')%))
... TTGATCAGTCTCATCTGAGAGTAACTTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCCCAG '**)****)*'*&*********('&)****&***(**')))())%)))&)))*')&***********)****
... TGAGAGTAACTTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCCCAGCAGCCTCTGGTTTCT '******&%)&)))&")')'')'*((******&)&'')'))$))'')&))$)**&&****************
... TGAGAGTAACTTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCCCAGCAGCCTCTGGTTTCT ##&&(#')$')'%&&#)%$#$%"%###&!%))'%%''%'))&))#)&%((%())))%)%)))%*********
... GAGAGTAACTTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCCCAGCAGCCTCTGGTTTCTT )&$'$'$%!&&%&&#!'%'))%''&%'&))))''$""'%'%&%'#'%'"!'')#&)))))%$)%)&'"')))
... TTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCCCAGCAGCCTCTGGTTTCTTCATGTGGCT ++++++++++++++++++++++++++++++++++++++*++++++**++++**+**''**+*+*'*)))*)#
... TTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCCCAGCAGCCTCTGGTTTCTTCATGTGGCT ++++++++++++++++++++++++++++++++++++++*++++++**++++**+**''**+*+*'*)))*)#
- Alignments: Tags
... AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:0 MD:Z:72 YT:Z:UU NH:i:2 CC:Z:chr22 CP:i:16189276 HI:i:0
... AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:0 MD:Z:72 YT:Z:UU NH:i:3 CC:Z:= CP:i:19921600 HI:i:0
... AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:4 MD:Z:72 YT:Z:UU XS:A:+ NH:i:3 CC:Z:= CP:i:19921465 HI:i:0
... AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:4 MD:Z:72 YT:Z:UU XS:A:+ NH:i:2 CC:Z:chr22 CP:i:16189138 HI:i:0
... AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:5 MD:Z:72 YT:Z:UU XS:A:+ NH:i:3 CC:Z:= CP:i:19921464 HI:i:0
... AS:i:0 XM:i:0 XO:i:0 XG:i:0 MD:Z:72 NM:i:0 XS:A:+ NH:i:5 CC:Z:= CP:i:19653717 HI:i:0
... AS:i:0 XM:i:0 XO:i:0 XG:i:0 MD:Z:72 NM:i:0 XS:A:+ NH:i:5 CC:Z:= CP:i:19921455 HI:i:1
## Called variants: VCF files
Input and manipulation: [VariantAnnotation][] `readVcf()`,
`readInfo()`, `readGeno()` selectively with `ScanVcfParam()`.
- Header
##fileformat=VCFv4.2
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">
##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency">
...
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
...
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
- Location
#CHROM POS ID REF ALT QUAL FILTER ...
20 14370 rs6054257 G A 29 PASS ...
20 17330 . T A 3 q10 ...
20 1110696 rs6040355 A G,T 67 PASS ...
20 1230237 . T . 47 PASS ...
20 1234567 microsat1 GTC G,GTCT 50 PASS ...
- Variant INFO
#CHROM POS ... INFO ...
20 14370 ... NS=3;DP=14;AF=0.5;DB;H2 ...
20 17330 ... NS=3;DP=11;AF=0.017 ...
20 1110696 ... NS=2;DP=10;AF=0.333,0.667;AA=T;DB ...
20 1230237 ... NS=3;DP=13;AA=T ...
20 1234567 ... NS=3;DP=9;AA=G ...
- Genotype FORMAT and samples
... POS ... FORMAT NA00001 NA00002 NA00003
... 14370 ... GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.
... 17330 ... GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3 0/0:41:3
... 1110696 ... GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2 2/2:35:4
... 1230237 ... GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2
... 1234567 ... GT:GQ:DP 0/1:35:4 0/2:17:2 1/1:40:3
## Genome annotations: BED, WIG, GTF, etc. files
Input: [rtracklayer][] `import()`
- BED: range-based annotation (see
http://genome.ucsc.edu/FAQ/FAQformat.html for definition of this and
related formats)
- WIG / bigWig: dense, continuous-valued data
- GTF: gene model
- Component coordinates
7 protein_coding gene 27221129 27224842 . - . ...
...
7 protein_coding transcript 27221134 27224835 . - . ...
7 protein_coding exon 27224055 27224835 . - . ...
7 protein_coding CDS 27224055 27224763 . - 0 ...
7 protein_coding start_codon 27224761 27224763 . - 0 ...
7 protein_coding exon 27221134 27222647 . - . ...
7 protein_coding CDS 27222418 27222647 . - 2 ...
7 protein_coding stop_codon 27222415 27222417 . - 0 ...
7 protein_coding UTR 27224764 27224835 . - . ...
7 protein_coding UTR 27221134 27222414 . - . ...
- Annotations
gene_id "ENSG00000005073"; gene_name "HOXA11"; gene_source "ensembl_havana"; gene_biotype "protein_coding";
...
... transcript_id "ENST00000006015"; transcript_name "HOXA11-001"; transcript_source "ensembl_havana"; tag "CCDS"; ccds_id "CCDS5411";
... exon_number "1"; exon_id "ENSE00001147062";
... exon_number "1"; protein_id "ENSP00000006015";
... exon_number "1";
... exon_number "2"; exon_id "ENSE00002099557";
... exon_number "2"; protein_id "ENSP00000006015";
... exon_number "2";
...
...
# Data representation in _R_ / _Bioconductor_
This section briefly illustrates how different high-throughput
sequence data types are represented in _R_ / _Bioconductor_. Select
relevant data types for your area of interest, and work through the
examples. Take time to consult help pages, understand the output of
function calls, and the relationship between standard data formats
(summarized in the previous section) and the corresponding _R_ /
_Bioconductor_ representation.
## Background: Ranges
![Alt Ranges Algebra](our_figures/RangeOperations.png)
Ranges
- IRanges
- `start()` / `end()` / `width()`
- List-like -- `length()`, subset, etc.
- 'metadata', `mcols()`
- GRanges
- 'seqnames' (chromosome), 'strand'
- `Seqinfo`, including `seqlevels` and `seqlengths`
Intra-range methods
- Independent of other ranges in the same object
- GRanges variants strand-aware
- `shift()`, `narrow()`, `flank()`, `promoters()`, `resize()`,
`restrict()`, `trim()`
- See `?"intra-range-methods"`
Inter-range methods
- Depends on other ranges in the same object
- `range()`, `reduce()`, `gaps()`, `disjoin()`
- `coverage()` (!)
- see `?"inter-range-methods"`
Between-range methods
- Functions of two (or more) range objects
- `findOverlaps()`, `countOverlaps()`, ..., `%over%`, `%within%`,
`%outside%`; `union()`, `intersect()`, `setdiff()`, `punion()`,
`pintersect()`, `psetdiff()`
Example
```{r ranges, message=FALSE}
library(GenomicRanges)
gr <- GRanges("A", IRanges(c(10, 20, 22), width=5), "+")
shift(gr, 1) # 1-based coordinates!
range(gr) # intra-range
reduce(gr) # inter-range
coverage(gr)
setdiff(range(gr), gr) # 'introns'
```
IRangesList, GRangesList
- List: all elements of the same type
- Many *List-aware methods, but a common 'trick': apply a vectorized
function to the unlisted representaion, then re-list
grl <- GRangesList(...)
orig_gr <- unlist(grl)
transformed_gr <- FUN(orig)
transformed_grl <- relist(transformed_gr, grl)
Reference
- Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M, et al. (2013)
Software for Computing and Annotating Genomic Ranges. PLoS Comput
Biol 9(8): e1003118. doi:10.1371/journal.pcbi.1003118
## _Biostrings_ (DNA or amino acid sequences)
Classes
- XString, XStringSet, e.g., DNAString (genomes),
DNAStringSet (reads)
Methods --
- [Cheat sheat](http://bioconductor.org/packages/release/bioc/vignettes/Biostrings/inst/doc/BiostringsQuickOverview.pdf)
- Manipulation, e.g., `reverseComplement()`
- Summary, e.g., `letterFrequency()`
- Matching, e.g., `matchPDict()`, `matchPWM()`
Related packages
- [BSgenome][]
- Whole-genome representations
- Model and custom
- [ShortRead][]
- FASTQ files
Example
- Whole-genome sequences are distrubuted by ENSEMBL, NCBI, and others
as FASTA files; model organism whole genome sequences are packaged
into more user-friendly `BSgenome` packages. The following
calculates GC content across chr14.
```{r BSgenome-require, message=FALSE}
library(BSgenome.Hsapiens.UCSC.hg19)
chr14_range = GRanges("chr14", IRanges(1, seqlengths(Hsapiens)["chr14"]))
chr14_dna <- getSeq(Hsapiens, chr14_range)
letterFrequency(chr14_dna, "GC", as.prob=TRUE)
```
## _GenomicAlignments_ (Aligned reads)
Classes -- GenomicRanges-like behaivor
- GAlignments, GAlignmentPairs, GAlignmentsList
- SummarizedExperiment
- Matrix where rows are indexed by genomic ranges, columns by a
DataFrame.
Methods
- `readGAlignments()`, `readGAlignmentsList()`
- Easy to restrict input, iterate in chunks
- `summarizeOverlaps()`
Example
- Find reads supporting the junction identified above, at position
19653707 + 66M = 19653773 of chromosome 14
```{r bam-require}
library(GenomicRanges)
library(GenomicAlignments)
library(Rsamtools)
## our 'region of interest'
roi <- GRanges("chr14", IRanges(19653773, width=1))
## sample data
library('RNAseqData.HNRNPC.bam.chr14')
bf <- BamFile(RNAseqData.HNRNPC.bam.chr14_BAMFILES[[1]], asMates=TRUE)
## alignments, junctions, overlapping our roi
paln <- readGAlignmentsList(bf)
j <- summarizeJunctions(paln, with.revmap=TRUE)
j_overlap <- j[j %over% roi]
## supporting reads
paln[j_overlap$revmap[[1]]]
```
## _VariantAnnotation_ (Called variants)
Classes -- GenomicRanges-like behavior
- VCF -- 'wide'
- VRanges -- 'tall'
Functions and methods
- I/O and filtering: `readVcf()`, `readGeno()`, `readInfo()`,
`readGT()`, `writeVcf()`, `filterVcf()`
- Annotation: `locateVariants()` (variants overlapping ranges),
`predictCoding()`, `summarizeVariants()`
- SNPs: `genotypeToSnpMatrix()`, `snpSummary()`
Example
- Read variants from a VCF file, and annotate with respect to a known
gene model
```{r vcf, message=FALSE}
## input variants
library(VariantAnnotation)
fl <- system.file("extdata", "chr22.vcf.gz", package="VariantAnnotation")
vcf <- readVcf(fl, "hg19")
seqlevels(vcf) <- "chr22"
## known gene model
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
coding <- locateVariants(rowRanges(vcf),
TxDb.Hsapiens.UCSC.hg19.knownGene,
CodingVariants())
head(coding)
```
Related packages
- [ensemblVEP][]
- Forward variants to Ensembl Variant Effect Predictor
- [VariantTools][], [h5vc][]
- Call variants
Reference
- Obenchain, V, Lawrence, M, Carey, V, Gogarten, S, Shannon, P, and
Morgan, M. VariantAnnotation: a Bioconductor package for exploration
and annotation of genetic variants. Bioinformatics, first published
online March 28, 2014
[doi:10.1093/bioinformatics/btu168](http://bioinformatics.oxfordjournals.org/content/early/2014/04/21/bioinformatics.btu168)
## _rtracklayer_ (Genome annotations)
- Import BED, GTF, WIG, etc
- Export GRanges to BED, GTF, WIG, ...
- Access UCSC genome browser
# Big data
Much Bioinformatic data is very large. The discussion so far has
assumed that the data can be read into memory. Here we mention two
important general strategies for working with large data; we will
explore these in greater detail in a later lab, but feel free to ask
questions and explore this material now.
Restriction
- e.g., `ScanBamParam()` limits input to desired data at specific
genomic ranges
Iteration
- e.g., `yieldSize` argument of `BamFile()`, or `FastqStreamer()`
allows iteration through large files.
Compression
- Genomic vectors represented as `Rle` (run-length encoding) class
- Lists e.g., `GRangesList` are efficiently maintain the illusion that
vector elements are grouped.
Parallel processing
- e.g., via [BiocParallel][] package
Reference
- Lawrence, M and Morgan, M. Scalable Genomic Computing and
Visualization with _R_ and _Bioconductor_. Statistical Science 29
(2) (2014), [214-226](http://arxiv.org/abs/1409.2864).
# Exercises
## Summarize overlaps
The goal is to count the number of reads overlapping exons grouped
into genes. This type of count data is the basic input for RNASeq
differential expression analysis, e.g., through [DESeq2][] and
[edgeR][].
1. Identify the regions of interest. We use a 'TxDb' package with gene
models alreaddy defined
```{r summarizeOverlaps-roi, message=FALSE}
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
exByGn <- exonsBy(TxDb.Hsapiens.UCSC.hg19.knownGene, "gene")
## only chromosome 14
seqlevels(exByGn, force=TRUE) = "chr14"
```
2. Identify the sample BAM files.
```{r summarizeOverlaps-bam, message=FALSE}
library(RNAseqData.HNRNPC.bam.chr14)
length(RNAseqData.HNRNPC.bam.chr14_BAMFILES)
```
3. Summarize overlaps, optionally in parallel
```{r summarizeOverlaps}
## next 2 lines optional; non-Windows
library(BiocParallel)
register(MulticoreParam(workers=2))
olaps <- summarizeOverlaps(exByGn, RNAseqData.HNRNPC.bam.chr14_BAMFILES[1:2])
```
4. Explore our handiwork, e.g., library sizes (column sums),
relationship between gene length and number of mapped reads, etc.
```{r summarizeOverlaps-explore}
olaps
head(assay(olaps))
colSums(assay(olaps)) # library sizes
plot(sum(width(olaps)), rowMeans(assay(olaps)), log="xy")
```
5. As an advanced exercise, investigate the relationship between GC
content and read count
```{r summarizeOverlaps-gc}
library(BSgenome.Hsapiens.UCSC.hg19)
sequences <- getSeq(BSgenome.Hsapiens.UCSC.hg19, rowRanges(olaps))
gcPerExon <- letterFrequency(unlist(sequences), "GC")
gc <- relist(as.vector(gcPerExon), sequences)
gc_percent <- sum(gc) / sum(width(olaps))
plot(gc_percent, rowMeans(assay(olaps)), log="y")
```
# Resources
Acknowledgements
The material for this lab was taken from a presentation given by Martin
Morgan at CSAMA 2015.
[biocViews]: http://bioconductor.org/packages/BiocViews.html#___Software
[AnnotationData]: http://bioconductor.org/packages/BiocViews.html#___AnnotationData
[aprof]: http://cran.r-project.org/web/packages/aprof/index.html
[hexbin]: http://cran.r-project.org/web/packages/hexbin/index.html
[lineprof]: https://github.com/hadley/lineprof
[microbenchmark]: http://cran.r-project.org/web/packages/microbenchmark/index.html
[AnnotationDbi]: http://bioconductor.org/packages/AnnotationDbi
[BSgenome]: http://bioconductor.org/packages/BSgenome
[BiocParallel]: http://bioconductor.org/packages/BiocParallel
[Biostrings]: http://bioconductor.org/packages/Biostrings
[CNTools]: http://bioconductor.org/packages/CNTools
[ChIPQC]: http://bioconductor.org/packages/ChIPQC
[ChIPpeakAnno]: http://bioconductor.org/packages/ChIPpeakAnno
[DESeq2]: http://bioconductor.org/packages/DESeq2
[DiffBind]: http://bioconductor.org/packages/DiffBind
[GenomicAlignments]: http://bioconductor.org/packages/GenomicAlignments
[GenomicRanges]: http://bioconductor.org/packages/GenomicRanges
[IRanges]: http://bioconductor.org/packages/IRanges
[KEGGREST]: http://bioconductor.org/packages/KEGGREST
[PSICQUIC]: http://bioconductor.org/packages/PSICQUIC
[rtracklayer]: http://bioconductor.org/packages/rtracklayer
[Rsamtools]: http://bioconductor.org/packages/Rsamtools
[ShortRead]: http://bioconductor.org/packages/ShortRead
[VariantAnnotation]: http://bioconductor.org/packages/VariantAnnotation
[VariantFiltering]: http://bioconductor.org/packages/VariantFiltering
[VariantTools]: http://bioconductor.org/packages/VariantTools
[biomaRt]: http://bioconductor.org/packages/biomaRt
[cn.mops]: http://bioconductor.org/packages/cn.mops
[h5vc]: http://bioconductor.org/packages/h5vc
[edgeR]: http://bioconductor.org/packages/edgeR
[ensemblVEP]: http://bioconductor.org/packages/ensemblVEP
[limma]: http://bioconductor.org/packages/limma
[metagenomeSeq]: http://bioconductor.org/packages/metagenomeSeq
[phyloseq]: http://bioconductor.org/packages/phyloseq
[snpStats]: http://bioconductor.org/packages/snpStats
[org.Hs.eg.db]: http://bioconductor.org/packages/org.Hs.eg.db
[TxDb.Hsapiens.UCSC.hg19.knownGene]: http://bioconductor.org/packages/TxDb.Hsapiens.UCSC.hg19.knownGene
[BSgenome.Hsapiens.UCSC.hg19]: http://bioconductor.org/packages/BSgenome.Hsapiens.UCSC.hg19