diff --git a/setup.cfg b/setup.cfg index d6c5810..ca31a88 100644 --- a/setup.cfg +++ b/setup.cfg @@ -51,7 +51,7 @@ install_requires = importlib-metadata; python_version<"3.8" biocframe>=0.5.6,<0.6.0 biocutils>=0.1.4,<0.2.0 - summarizedexperiment>=0.4.0,<0.5.0 + summarizedexperiment>=0.4.1,<0.5.0 [options.packages.find] where = src diff --git a/src/multiassayexperiment/MultiAssayExperiment.py b/src/multiassayexperiment/MultiAssayExperiment.py index b52d9f1..f1dc1bc 100644 --- a/src/multiassayexperiment/MultiAssayExperiment.py +++ b/src/multiassayexperiment/MultiAssayExperiment.py @@ -71,7 +71,10 @@ def _validate_sample_map_with_expts(sample_map, experiments): if (len(unique_expt_names) != len(smap_unique_assays)) or ( unique_expt_names != smap_unique_assays ): - raise ValueError("'assays' mismatch between `sample_map` and `experiments`.") + warn( + "'experiments' contains names not represented in 'sample_map' or vice-versa.", + UserWarning, + ) # check if colnames exist agroups = sample_map.split("assay") @@ -488,6 +491,13 @@ def experiment(self, name: str, with_sample_data: bool = False) -> Any: return expt + def get_with_column_data(self, name: str) -> Any: + """Alias to :py:meth:`~experiment`. + + Consistency with Bioconductor's naming of the same function. + """ + return self.experiment(name, with_sample_data=True) + ############################ ######>> sample map <<###### ############################ @@ -570,8 +580,8 @@ def set_column_data( """ column_data = _sanitize_frame(column_data) - self._validate_column_data(column_data) - self._validate_sample_map_with_column_data(self._sample_map, column_data) + _validate_column_data(column_data) + _validate_sample_map_with_column_data(self._sample_map, column_data) output = self._define_output(in_place) output._column_data = column_data @@ -650,6 +660,28 @@ def metadata(self, metadata: dict): ######>> subset <<####### ######################### + def _normalize_column_slice(self, columns: Union[str, int, bool, Sequence, slice]): + _scalar = None + if columns != slice(None): + columns, _scalar = ut.normalize_subscript( + columns, len(self._column_data), self._column_data.row_names + ) + + return columns, _scalar + + def _filter_sample_map(self, columns: Union[str, int, bool, Sequence, slice]): + _samples_to_filter = self._column_data[columns,].row_names + + column_names_to_keep = {} + for i in self.experiment_names: + column_names_to_keep[i] = [] + + for _, row in self._sample_map: + if row["primary"] in _samples_to_filter: + column_names_to_keep[row["assay"]].append(row["colname"]) + + return column_names_to_keep + def subset_experiments( self, rows: Optional[Union[str, int, bool, Sequence]], @@ -667,14 +699,14 @@ def subset_experiments( :py:meth:`~biocutils.normalize_subscript.normalize_subscript`. columns: - Column indices to subset. + Column indices (from :py:attr:`~column_data`) to subset. Integer indices, a boolean filter, or (if the current object is named) names specifying the ranges to be extracted, see - :py:meth:`~biocutils.normalize_subscript.normalize_subsc + :py:meth:`~biocutils.normalize_subscript.normalize_subscript`. experiment_names: - Experiment name to keep. + Experiment names to keep. Integer indices, a boolean filter, or (if the current object is named) names specifying the ranges to be extracted, see @@ -703,9 +735,21 @@ def subset_experiments( _expts_copy = new_expt - if rows != slice(None) and columns != slice(None): + if rows != slice(None): for k, v in _expts_copy.items(): - _expts_copy[k] = v[rows, columns] + _expts_copy[k] = v[rows,] + + columns, _ = self._normalize_column_slice(columns) + if columns != slice(None): + _col_dict = self._filter_sample_map(columns) + + for k, v in _expts_copy.items(): + if k in _col_dict: + if len(_col_dict[k]) != 0: + _matched_indices = ut.match(_col_dict[k], v.column_names) + else: + _matched_indices = [] + _expts_copy[k] = v[:, list(_matched_indices)] return _expts_copy @@ -751,6 +795,10 @@ def _generic_slice( if columns is None: columns = slice(None) + columns, _ = self._normalize_column_slice(columns) + + # filter column_data + _new_column_data = self._column_data[columns,] if experiments is None: experiments = slice(None) @@ -764,20 +812,15 @@ def _generic_slice( for expname, expt in _new_experiments.items(): counter = 0 for _, row in self._sample_map: - if row["assay"] == expname and row["colname"] in expt.column_names: + if ( + row["assay"] == expname + and row["primary"] in _new_column_data.row_names + and row["colname"] in expt.column_names + ): smap_indices_to_keep.append(counter) counter += 1 _new_sample_map = self._sample_map[list(set(smap_indices_to_keep)),] - # filter column_data - subset_primary = list(set(_new_sample_map.get_column("primary"))) - coldata_indices_to_keep = [] - for idx, row in enumerate(self._column_data._row_names): - if row in subset_primary: - coldata_indices_to_keep.append(idx) - - _new_column_data = self._column_data[list(set(coldata_indices_to_keep)),] - return SlicerResult(_new_experiments, _new_sample_map, _new_column_data) def subset_by_experiments( @@ -908,7 +951,7 @@ def complete_cases(self) -> Sequence[bool]: """Identify samples that have data across all experiments. Returns: - A boolean vector same as the number of samples in column_data, + A boolean vector same as the number of samples in 'column_data', where each element is True if sample is present in all experiments or False. """ vec = [] @@ -921,7 +964,6 @@ def complete_cases(self) -> Sequence[bool]: smap_indices_to_keep.append(rdx) subset = self.sample_map[list(set(smap_indices_to_keep)),] - vec.append(set(subset.get_column("assay")) == set(self.experiment_names)) return vec @@ -934,15 +976,14 @@ def replicated(self) -> Dict[str, Dict[str, Sequence[bool]]]: are keys and values specify if the sample is replicated within each experiment. """ replicates = {} - all_samples = self.column_data.row_names + all_samples = self._column_data.row_names for expname, expt in self._experiments.items(): if expname not in replicates: replicates[expname] = {} for s in all_samples: - replicates[expname][s] = [] + replicates[expname][s] = [False] * expt.shape[1] - colnames = expt.column_names smap_indices_to_keep = [] _assay = self._sample_map.get_column("assay") @@ -952,17 +993,11 @@ def replicated(self) -> Dict[str, Dict[str, Sequence[bool]]]: subset_smap = self.sample_map[list(set(smap_indices_to_keep)),] - for x in colnames: - _subset_smap_colnames = subset_smap.get_column("colname") - _indices = [] - for cdx in range(len(_subset_smap_colnames)): - if _subset_smap_colnames[cdx] == x: - _indices.append(cdx) - - __subset_smap = subset_smap[_indices,] - - for s in all_samples: - replicates[expname][s].append(__subset_smap.get_column("primary")) + counter = 0 + for _, row in subset_smap: + if row["assay"] == expname: + replicates[expname][row["primary"]][counter] = True + counter += 1 return replicates diff --git a/tests/test_slices.py b/tests/test_slices.py index 04a7829..00295b0 100644 --- a/tests/test_slices.py +++ b/tests/test_slices.py @@ -43,7 +43,7 @@ def test_MAE_slice(): assert len(set(muMAE.sample_map["assay"])) == 3 assert len(set(muMAE.sample_map["primary"])) == 3 - sliced_MAE = muMAE[1:3, 1:3] + sliced_MAE = muMAE[1:3, 1:2] assert sliced_MAE is not None assert isinstance(sliced_MAE, mae.MultiAssayExperiment) @@ -51,9 +51,10 @@ def test_MAE_slice(): assert sliced_MAE.sample_map is not None assert sliced_MAE.column_data is not None - assert len(set(sliced_MAE.sample_map["assay"])) == 3 - assert len(set(sliced_MAE.sample_map["primary"])) == 3 - assert sliced_MAE.sample_map.shape[0] == 6 + assert len(set(sliced_MAE.sample_map["assay"])) == 1 + assert len(set(sliced_MAE.sample_map["primary"])) == 1 + assert sliced_MAE.sample_map.shape[0] != muMAE.sample_map.shape[0] + assert sliced_MAE.sample_map.shape[0] == 1000 sliced_MAE_assay = muMAE[None, None, ["rna", "spatial"]] assert sliced_MAE_assay is not None @@ -77,7 +78,7 @@ def test_MAE_slice(): assert len(set(sliced_MAE_assay.sample_map["assay"])) == 1 assert len(set(sliced_MAE_assay.sample_map["primary"])) == 1 - assert sliced_MAE_assay.sample_map.shape[0] == 5 + assert sliced_MAE_assay.sample_map.shape[0] == 1000 # def test_MAE_slice_dict(): @@ -137,7 +138,7 @@ def test_MAE_subset_by_column(): assert len(set(muMAE.sample_map["assay"])) == 3 assert len(set(muMAE.sample_map["primary"])) == 3 - sliced_MAE = muMAE.subset_by_column(columns=[10, 2, 5]) + sliced_MAE = muMAE.subset_by_column(columns=[1, 2]) assert sliced_MAE is not None assert isinstance(sliced_MAE, mae.MultiAssayExperiment) @@ -145,9 +146,10 @@ def test_MAE_subset_by_column(): assert sliced_MAE.sample_map is not None assert sliced_MAE.column_data is not None - assert len(set(sliced_MAE.sample_map["assay"])) == 3 - assert len(set(sliced_MAE.sample_map["primary"])) == 3 - assert sliced_MAE.sample_map.shape == (2030, 3) + assert len(set(sliced_MAE.sample_map["assay"])) == 2 + assert len(set(sliced_MAE.sample_map["primary"])) == 2 + assert sliced_MAE.sample_map.shape == (1030, 3) + assert len(sliced_MAE.experiment_names) == len(muMAE.experiment_names) def test_MAE_subsetByExpt():