-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathastfuncs.cpp
368 lines (318 loc) · 12.5 KB
/
astfuncs.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
/* astfuncs.cpp: functions for asteroid/comet two-body ephems
Copyright (C) 2010, Project Pluto
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#include <math.h>
#include <stddef.h>
#include <stdint.h>
#include <assert.h>
#include <stdbool.h>
#include "watdefs.h"
#include "comets.h"
#include "afuncs.h"
#define TEN_MILLION 1.e+7
#define HUND_MILLION 1.e+8
#define LARGE_AXIS ((uint32_t)(2100000000U))
#define VERY_LARGE_AXIS ((uint32_t)(3150000000U))
#define PI 3.141592653589793238462643383279502884197169399375105
#define GAUSS_K .01720209895
#define SOLAR_GM (GAUSS_K * GAUSS_K)
#define SQRT_2 1.4142135623730950488016887242096980785696718753769480731766797
#define THRESH 1.e-12
#define MIN_THRESH 1.e-14
#define CUBE_ROOT( X) (exp( log( X) / 3.))
double kepler( const double ecc, double mean_anom);
void setup_orbit_vectors( ELEMENTS DLLPTR *e); /* astfuncs.cpp */
void comet_posn_part_ii( const ELEMENTS DLLPTR *elem, const double t,
double DLLPTR *loc, double DLLPTR *vel);
/* Asteroid elements on the Guide CD-ROM are stored in a compressed format,
where a full set of elements consumes six long integers = 24 bytes. The
grisly details are described in the file \COMPRESS\ASTEROID.DOC on the
Guide CD-ROM. */
int DLL_FUNC setup_elems_from_ast_file( ELEMENTS DLLPTR *class_elem,
const uint32_t DLLPTR *elem, const double t_epoch)
{
double mean_anomaly;
mean_anomaly = (PI/180.) * (double)elem[0] / TEN_MILLION;
class_elem->asc_node = (PI/180.) * (double)elem[3] / TEN_MILLION;
class_elem->arg_per = (PI/180.) * (double)elem[4] / TEN_MILLION;
class_elem->incl = (PI/180.) * (double)elem[5] / TEN_MILLION;
class_elem->major_axis = (double)elem[1] / HUND_MILLION;
/* Originally, the above line was sufficient; it handled */
/* major axes out to 42.9 AU. When more distant asteroids */
/* were discovered, the code was modified to work out to */
/* 84 AU; then a final modification was made to allow it */
/* to work out to infinity... which is, admittedly, what */
/* I should have done right from the beginning. */
if( elem[1] > VERY_LARGE_AXIS) /* kludge to accommodate large axes */
{
double tval = 4. - class_elem->major_axis / 10.5;
class_elem->major_axis = 63. / tval;
}
else if( elem[1] > LARGE_AXIS) /* kludge to accommodate large axes */
class_elem->major_axis = class_elem->major_axis * 4. - 63.;
class_elem->ecc = (double)elem[2] / HUND_MILLION;
class_elem->q = class_elem->major_axis * (1. - class_elem->ecc);
class_elem->epoch = t_epoch;
class_elem->mean_anomaly = mean_anomaly;
derive_quantities( class_elem, SOLAR_GM);
class_elem->perih_time = t_epoch - mean_anomaly * class_elem->t0;
class_elem->central_obj = 0; /* all asteroids orbit the sun */
class_elem->gm = SOLAR_GM;
return( 0);
}
/* We want to have, in the ELEMENTS structure, the ratio of the minor
and major axes; the longitude of perihelion; and a unit vector,
"sideways", that lies in the plane of the orbit and points at right angles
to the direction of perihelion. */
void setup_orbit_vectors( ELEMENTS DLLPTR *e)
{
const double sin_incl = sin( e->incl), cos_incl = cos( e->incl);
double FAR *vec;
double vec_len;
double up[3];
unsigned i;
e->minor_to_major = sqrt( fabs( 1. - e->ecc * e->ecc));
e->lon_per = e->asc_node + atan2( sin( e->arg_per) * cos_incl,
cos( e->arg_per));
vec = e->perih_vec;
vec[0] = cos( e->lon_per) * cos_incl;
vec[1] = sin( e->lon_per) * cos_incl;
vec[2] = sin_incl * sin( e->lon_per - e->asc_node);
vec_len = sqrt( cos_incl * cos_incl + vec[2] * vec[2]);
if( cos_incl < 0.) /* for retrograde cases, make sure */
vec_len *= -1.; /* 'vec' has correct orientation */
for( i = 0; i < 3; i++)
vec[i] /= vec_len;
/* 'up' is a vector perpendicular to the plane of the orbit */
up[0] = sin( e->asc_node) * sin_incl;
up[1] = -cos( e->asc_node) * sin_incl;
up[2] = cos_incl;
vector_cross_product( e->sideways, up, vec);
}
void DLL_FUNC derive_quantities( ELEMENTS DLLPTR *e, const double gm)
{
if( e->ecc != 1.) /* for non-parabolic orbits: */
{
e->major_axis = e->q / fabs(1. - e->ecc);
e->t0 = e->major_axis * sqrt( e->major_axis / gm);
}
else
{
e->w0 = (3. / SQRT_2) / (e->q * sqrt( e->q / gm));
e->major_axis = e->t0 = 0.;
}
e->angular_momentum = sqrt( gm * e->q * (1. + e->ecc));
setup_orbit_vectors( e);
}
/* MS only got around to adding asinh in VS2013 : */
#if defined( _MSC_VER) && (_MSC_VER < 1800)
static double asinh( const double z)
{
return( log( z + sqrt( z * z + 1.)));
}
#endif
/* If the eccentricity is very close to parabolic, and the eccentric
anomaly is quite low, you can get an unfortunate situation where
roundoff error keeps you from converging. Consider the just-barely-
elliptical case, where in Kepler's equation,
M = E - e sin( E)
E and e sin( E) can be almost identical quantities. To
around this, near_parabolic( ) computes E - e sin( E) by expanding
the sine function as a power series:
E - e sin( E) = E - e( E - E^3/3! + E^5/5! - ...)
= (1-e)E + e( -E^3/3! + E^5/5! - ...)
It's a little bit expensive to do this, and you only need do it
quite rarely. (I only encountered the problem because I had orbits
that were supposed to be 'pure parabolic', but due to roundoff,
they had e = 1+/- epsilon, with epsilon _very_ small.) So 'near_parabolic'
is only called if we've gone seven iterations without converging. */
static double near_parabolic( const double ecc_anom, const double e)
{
const double anom2 = (e > 1. ? ecc_anom * ecc_anom : -ecc_anom * ecc_anom);
double term = e * anom2 * ecc_anom / 6.;
double rval = (1. - e) * ecc_anom - term;
unsigned n = 4;
while( fabs( term) > 1e-15)
{
term *= anom2 / (double)(n * (n + 1));
rval -= term;
n += 2;
}
return( rval);
}
/* For a full description of this function, see KEPLER.HTM on the Guide
Web site, http://www.projectpluto.com. There was a long thread about
solutions to Kepler's equation on sci.astro.amateur, and I decided to
go into excruciating detail as to how it's done below. */
#define MAX_ITERATIONS 7
double kepler( const double ecc, double mean_anom)
{
double curr, err, thresh, offset = 0.;
double delta_curr = 1.;
bool is_negative = false;
unsigned n_iter = 0;
if( !mean_anom)
return( 0.);
if( ecc < 1.)
{
if( mean_anom < -PI || mean_anom > PI)
{
double tmod = fmod( mean_anom, PI * 2.);
if( tmod > PI) /* bring mean anom within -pi to +pi */
tmod -= 2. * PI;
else if( tmod < -PI)
tmod += 2. * PI;
offset = mean_anom - tmod;
mean_anom = tmod;
}
if( ecc < .9) /* low-eccentricity formula from Meeus, p. 195 */
{
curr = atan2( sin( mean_anom), cos( mean_anom) - ecc);
/* (usually) one or two correction steps, and we're done */
do
{
err = (curr - ecc * sin( curr) - mean_anom) / (1. - ecc * cos( curr));
curr -= err;
}
while( fabs( err) > THRESH);
return( curr + offset);
}
}
if( mean_anom < 0.)
{
mean_anom = -mean_anom;
is_negative = true;
}
curr = mean_anom;
thresh = THRESH * fabs( 1. - ecc);
/* Due to roundoff error, there's no way we can hope to */
/* get below a certain minimum threshhold anyway: */
if( thresh < MIN_THRESH)
thresh = MIN_THRESH;
if( ecc > 1. && mean_anom / ecc > 3.) /* hyperbolic, large-mean-anomaly */
curr = log( mean_anom / ecc) + 0.85;
else if( (ecc > .8 && mean_anom < PI / 3.) || ecc > 1.) /* up to 60 degrees */
{
double trial = mean_anom / fabs( 1. - ecc);
if( trial * trial > 6. * fabs(1. - ecc)) /* cubic term is dominant */
trial = CUBE_ROOT( 6. * mean_anom);
curr = trial;
if( thresh > THRESH) /* happens if e > 2. */
thresh = THRESH;
}
if( ecc < 1.)
while( fabs( delta_curr) > thresh)
{
if( n_iter++ > MAX_ITERATIONS)
err = near_parabolic( curr, ecc) - mean_anom;
else
err = curr - ecc * sin( curr) - mean_anom;
delta_curr = -err / (1. - ecc * cos( curr));
curr += delta_curr;
assert( n_iter < 20);
}
else
while( fabs( delta_curr) > thresh)
{
if( n_iter++ > MAX_ITERATIONS && ecc < 1.01)
err = -near_parabolic( curr, ecc) - mean_anom;
else
err = ecc * sinh( curr) - curr - mean_anom;
delta_curr = -err / (ecc * cosh( curr) - 1.);
curr += delta_curr;
assert( n_iter < 20);
}
return( is_negative ? offset - curr : offset + curr);
}
void comet_posn_part_ii( const ELEMENTS DLLPTR *elem, const double t,
double DLLPTR *loc, double DLLPTR *vel)
{
double true_anom, r, x, y, r0;
if( elem->ecc == 1.) /* parabolic */
{
double g = elem->w0 * t * .5;
y = CUBE_ROOT( g + sqrt( g * g + 1.));
true_anom = 2. * atan( y - 1. / y);
}
else /* got the mean anomaly; compute eccentric, then true */
{
double ecc_anom;
ecc_anom = kepler( elem->ecc, elem->mean_anomaly);
if( elem->ecc > 1.) /* hyperbolic case */
{
x = (elem->ecc - cosh( ecc_anom));
y = sinh( ecc_anom);
}
else /* elliptical case */
{
x = (cos( ecc_anom) - elem->ecc);
y = sin( ecc_anom);
}
y *= elem->minor_to_major;
true_anom = atan2( y, x);
}
r0 = elem->q * (1. + elem->ecc);
r = r0 / (1. + elem->ecc * cos( true_anom));
x = r * cos( true_anom);
y = r * sin( true_anom);
if( loc)
{
loc[0] = elem->perih_vec[0] * x + elem->sideways[0] * y;
loc[1] = elem->perih_vec[1] * x + elem->sideways[1] * y;
loc[2] = elem->perih_vec[2] * x + elem->sideways[2] * y;
loc[3] = r;
}
if( vel && (elem->angular_momentum != 0.))
{
double angular_component = elem->angular_momentum / (r * r);
double radial_component = elem->ecc * sin( true_anom) *
elem->angular_momentum / (r * r0);
double x1 = x * radial_component - y * angular_component;
double y1 = y * radial_component + x * angular_component;
unsigned i;
for( i = 0; i < 3; i++)
vel[i] = elem->perih_vec[i] * x1 + elem->sideways[i] * y1;
}
}
int DLL_FUNC comet_posn_and_vel( ELEMENTS DLLPTR *elem, double t,
double DLLPTR *loc, double DLLPTR *vel)
{
t -= elem->perih_time;
if( elem->ecc != 1.) /* not parabolic */
{
t /= elem->t0;
if( elem->ecc < 1.) /* elliptical case; throw out extra orbits */
{ /* to fit mean anom between -PI and PI */
t = fmod( t, PI * 2.);
if( t < -PI) t += 2. * PI;
if( t > PI) t -= 2. * PI;
}
elem->mean_anomaly = t;
}
comet_posn_part_ii( elem, t, loc, vel);
return( 0);
}
int DLL_FUNC comet_posn( ELEMENTS DLLPTR *elem, double t, double DLLPTR *loc)
{
return( comet_posn_and_vel( elem, t, loc, NULL));
}
double DLL_FUNC phase_angle_correction_to_magnitude( const double phase_angle,
const double slope_param)
{
const double epsilon = 1e-10;
const double log_tan_half_phase = log( tan( phase_angle / 2.) + epsilon);
const double phi1 = exp( -3.33 * exp( log_tan_half_phase * 0.63));
const double phi2 = exp( -1.87 * exp( log_tan_half_phase * 1.22));
return( -2.5 * log10( (1. - slope_param) * phi1 + slope_param * phi2));
}