We have encountered a small patch of surprising values south of Long Island, NY, USA. We downloaded the GEBCO_2024 Grid (ice surface elevation) as zipped NetCDF, and then decompressed it.
Citation: GEBCO Compilation Group (2024) GEBCO 2024 Grid (doi:10.5285/1c44ce99-0a0d-5f4f-e063-7086abc0ea0f)
suppressPackageStartupMessages({
library(stars)
library(sf)
library(wk)
library(rnaturalearth)
library(topotools)
library(dplyr)
})
coast = rnaturalearth::ne_coastline(scale = "medium", returnclass = "sf")
BB = c(xmin = -74.9, xmax = -65, ymin = 38.8, ymax = 46)
gebco = topotools::read_gebco(bb = BB)
Next define a small study region where we have discovered a possible issue.
bb = c(xmin = -71, ymin = 40, xmax = -70.5, ymax = 40.5) |>
sf::st_bbox(crs = 4326) |>
sf::st_as_sfc()
plot(gebco, axes = TRUE, reset = FALSE, main = "GEBCO 2024")
## downsample set to 2
plot(sf::st_geometry(coast), col = "orange", add = TRUE)
plot(bb, add = TRUE, border = "green")
Below we zoom in on the region. We can see some linear interpolation features, but the small cluster of white pixels are particularly distinctive.
subset = gebco[bb]
plot(subset, axes = TRUE)
And here are interpolated coordinates and elevations for pixels at or above 0m.
x = as.data.frame(subset) |>
dplyr::filter(z >= 0) |>
print()
## x y z
## 1 -70.79792 40.16875 53
## 2 -70.79375 40.16875 382
## 3 -70.79375 40.16458 91