-
Notifications
You must be signed in to change notification settings - Fork 1
/
tmvnorm.R
737 lines (654 loc) · 28.3 KB
/
tmvnorm.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
################################################################################
#
# Sampling from Truncated multivariate Gaussian distribution using
#
# a) Rejection sampling
# b) Gibbs sampler
#
# for both rectangular constraints a <= x <= b and general linear constraints
# a <= Dx <= b. For D = I this implies rectangular constraints.
# The method can be used using both covariance matrix sigma and precision matrix H.
#
# Author: Stefan Wilhelm
#
# References:
# (1) Jayesh H. Kotecha and Petar M. Djuric (1999) :
# "GIBBS SAMPLING APPROACH FOR GENERATION OF TRUNCATED MULTIVARIATE GAUSSIAN RANDOM VARIABLES"
# (2) Geweke (1991):
# "Effcient simulation from the multivariate normal and Student-t distributions
# subject to linear constraints and the evaluation of constraint probabilities"
# (3) John Geweke (2005): Contemporary Bayesian Econometrics and Statistics, Wiley, pp.171-172
# (4) Wilhelm (2011) package vignette to package "tmvtnorm"
#
################################################################################
# We need this separate method rtmvnorm.sparseMatrix() because
# rtmvnorm() initialises dense d x d sigma and D matrix which will not work for high dimensions d.
# It also does some sanity checks on sigma and D (determinant etc.) which will not
# work for high dimensions.
# returns a matrix X (n x d) with random draws
# from a truncated multivariate normal distribution with d dimensionens
# using Gibbs sampling
#
# @param n Anzahl der Realisationen
# @param mean mean vector (d x 1) der Normalverteilung
# @param lower lower truncation vector (d x 1) with lower <= x <= upper
# @param upper upper truncation vector (d x 1) with lower <= x <= upper
# @param H precision matrix (d x d) if given, defaults to identity matrix
rtmvnorm.sparseMatrix <- function(n,
mean = rep(0, nrow(H)),
H = sparseMatrix(i=1:length(mean), j=1:length(mean), x=1),
lower = rep(-Inf, length = length(mean)),
upper = rep( Inf, length = length(mean)),
...)
{
if (is.null(H) || !inherits(H, "sparseMatrix")) {
stop("H must be of class 'sparseMatrix'")
}
rtmvnorm.gibbs.Fortran(n, mean, sigma=NULL, H, lower, upper, ...)
}
# Erzeugt eine Matrix X (n x d) mit Zufallsrealisationen
# aus einer Trunkierten Multivariaten Normalverteilung mit d Dimensionen
# �ber Rejection Sampling oder Gibbs Sampler aus einer Multivariaten Normalverteilung.
# If matrix D is given, it must be a (d x d) full rank matrix.
# Therefore this method can only cover the case with only r <= d linear restrictions.
# For r > d linear restrictions, please see rtmvnorm2(n, mean, sigma, D, lower, upper),
# where D can be defined as (r x d).
#
# @param n Anzahl der Realisationen
# @param mean Mittelwertvektor (d x 1) der Normalverteilung
# @param sigma Kovarianzmatrix (d x d) der Normalverteilung
# @param lower unterer Trunkierungsvektor (d x 1) mit lower <= Dx <= upper
# @param upper oberer Trunkierungsvektor (d x 1) mit lower <= Dx <= upper
# @param D Matrix for linear constraints, defaults to (d x d) diagonal matrix
# @param H Precision matrix (d x d) if given
# @param algorithm c("rejection", "gibbs", "gibbsR")
rtmvnorm <- function(n,
mean = rep(0, nrow(sigma)),
sigma = diag(length(mean)),
lower = rep(-Inf, length = length(mean)),
upper = rep( Inf, length = length(mean)),
D = diag(length(mean)),
H = NULL,
algorithm=c("rejection", "gibbs", "gibbsR"), ...)
{
algorithm <- match.arg(algorithm)
if (is.null(mean) && (is.null(sigma) || is.null(H))) {
stop("Invalid arguments for ",sQuote("mean")," and ",sQuote("sigma"),"/",sQuote("H"),". Need at least mean vector and covariance or precision matrix.")
}
# check of standard tmvtnorm arguments
cargs <- checkTmvArgs(mean, sigma, lower, upper)
mean <- cargs$mean
sigma <- cargs$sigma
lower <- cargs$lower
upper <- cargs$upper
if (!is.null(H) && sigma != diag(length(mean))) {
stop("Cannot give both covariance matrix sigma and precision matrix H arguments at the same time")
}
else if (!is.null(H) && !inherits(H, "sparseMatrix")) {
# check precision matrix H if it is symmetric and positive definite
checkSymmetricPositiveDefinite(H, name="H")
# H explicitly given, we will override sigma later if we need sigma
# sigma <- solve(H)
}
# else sigma explicitly or implicitly given
# check of additional arguments
if (n < 1 || !is.numeric(n) || n != as.integer(n) || length(n) > 1) {
stop("n must be a integer scalar > 0")
}
# check matrix D, must be n x n with rank n
if (!is.matrix(D) || det(D) == 0) {
stop("D must be a (n x n) matrix with full rank n!")
}
if (!identical(D,diag(length(mean)))) {
# D <> I : general linear constraints
retval <- rtmvnorm.linear.constraints(n=n, mean=mean, sigma=sigma, H=H, lower=lower, upper=upper, D=D, algorithm=algorithm, ...)
return(retval)
} else {
# D == I : rectangular case
if (algorithm == "rejection") {
if (!is.null(H)) {
# precision matrix case H
retval <- rtmvnorm.rejection(n, mean, sigma=solve(H), lower, upper, ...)
} else {
# covariance matrix case sigma
retval <- rtmvnorm.rejection(n, mean, sigma, lower, upper, ...)
}
} else if (algorithm == "gibbs") {
# precision matrix case H vs. covariance matrix case sigma will be handled inside method
retval <- rtmvnorm.gibbs.Fortran(n, mean, sigma, H, lower, upper, ...)
} else if (algorithm == "gibbsR") {
if (!is.null(H)) {
# precision matrix case H
retval <- rtmvnorm.gibbs.Precision(n, mean, H, lower, upper, ...)
} else {
# covariance matrix case sigma
retval <- rtmvnorm.gibbs(n, mean, sigma, lower, upper, ...)
}
}
}
return(retval)
}
# Erzeugt eine Matrix X (n x k) mit Zufallsrealisationen
# aus einer Trunkierten Multivariaten Normalverteilung mit k Dimensionen
# �ber Rejection Sampling aus einer Multivariaten Normalverteilung mit der Bedingung
# lower <= Dx <= upper
#
# Wenn D keine Diagonalmatrix ist, dann ist gelten lineare Restriktionen f�r
# lower <= Dx <= upper (siehe Geweke (1991))
#
# @param n Anzahl der Realisationen
# @param mean Mittelwertvektor (k x 1) der Normalverteilung
# @param sigma Kovarianzmatrix (k x k) der Normalverteilung
# @param lower unterer Trunkierungsvektor (k x 1) mit lower <= x <= upper
# @param upper oberer Trunkierungsvektor (k x 1) mit lower <= x <= upper
# @param D Matrix for linear constraints, defaults to diagonal matrix
rtmvnorm.rejection <- function(n,
mean = rep(0, nrow(sigma)),
sigma = diag(length(mean)),
lower = rep(-Inf, length = length(mean)),
upper = rep( Inf, length = length(mean)),
D = diag(length(mean)))
{
# No check of input parameters, checks are done in rtmvnorm()!
# k = Dimension
k <- length(mean)
# Ergebnismatrix (n x k)
Y <- matrix(NA, n, k)
# Anzahl der noch zu ziehenden Samples
numSamples <- n
# Anzahl der akzeptierten Samples insgesamt
numAcceptedSamplesTotal <- 0
# Akzeptanzrate alpha aus der Multivariaten Normalverteilung bestimmen
r <- length(lower)
d <- length(mean)
if (r == d & identical(D, diag(d))) {
alpha <- pmvnorm(lower=lower, upper=upper, mean=mean, sigma=sigma)
if (alpha <= 0.01) warning(sprintf("Acceptance rate is very low (%s) and rejection sampling becomes inefficient. Consider using Gibbs sampling.", alpha))
estimatedAlpha <- TRUE
} else {
# TODO: Wie bestimme ich aus lower <= Dx <= upper f�r r > d Restriktionen die Akzeptanzrate alpha?
# Defere calculation of alpha. Assume for now that all samples will be accepted.
alpha <- 1
estimatedAlpha <- FALSE
}
# Ziehe wiederholt aus der Multivariaten NV und schaue, wieviel Samples nach Trunkierung �brig bleiben
while(numSamples > 0)
{
# Erzeuge N/alpha Samples aus einer multivariaten Normalverteilung: Wenn alpha zu niedrig ist, wird Rejection Sampling ineffizient und N/alpha zu gro�. Dann nur N erzeugen
nproposals <- ifelse (numSamples/alpha > 1000000, numSamples, ceiling(max(numSamples/alpha,10)))
X <- rmvnorm(nproposals, mean=mean, sigma=sigma)
# Bestimme den Anteil der Samples nach Trunkierung
# Bug: ind= rowSums(lower <= X & X <= upper) == k
# wesentlich schneller als : ind=apply(X, 1, function(x) all(x >= lower & x<=upper))
X2 <- X %*% t(D)
ind <- logical(nproposals)
for (i in 1:nproposals)
{
ind[i] <- all(X2[i,] >= lower & X2[i,] <= upper)
}
# Anzahl der akzeptierten Samples in diesem Durchlauf
numAcceptedSamples <- length(ind[ind==TRUE])
# Wenn nix akzeptiert wurde, dann weitermachen
if (length(numAcceptedSamples) == 0 || numAcceptedSamples == 0) next
if (!estimatedAlpha) {
alpha <- numAcceptedSamples / nproposals
if (alpha <= 0.01) warning(sprintf("Acceptance rate is very low (%s) and rejection sampling becomes inefficient. Consider using Gibbs sampling.", alpha))
}
#cat("numSamplesAccepted=",numAcceptedSamples," numSamplesToDraw = ",numSamples,"\n")
numNeededSamples <- min(numAcceptedSamples, numSamples)
Y[(numAcceptedSamplesTotal+1):(numAcceptedSamplesTotal+numNeededSamples),] <- X[which(ind)[1:numNeededSamples],]
# Anzahl der akzeptierten Samples insgesamt
numAcceptedSamplesTotal <- numAcceptedSamplesTotal + numAcceptedSamples
# Anzahl der verbliebenden Samples
numSamples <- numSamples - numAcceptedSamples
}
Y
}
# Gibbs Sampler for Truncated Univariate Normal Distribution
#
# Jayesh H. Kotecha and Petar M. Djuric (1999) : GIBBS SAMPLING APPROACH FOR GENERATION OF TRUNCATED MULTIVARIATE GAUSSIAN RANDOM VARIABLES
#
# Im univariaten Fall sind die erzeugten Samples unabh�ngig,
# deswegen gibt es hier keine Chain im eigentlichen Sinn und auch keinen Startwert/Burn-in/Thinning.
#
# As a change to Kotecha, we do not draw a sample x from the Gaussian Distribution
# and then apply pnorm(x) - which is uniform - but rather draw directly from the
# uniform distribution u ~ U(0, 1).
#
# @param n number of realisations
# @param mu mean of the normal distribution
# @param sigma standard deviation
# @param a lower truncation point
# @param b upper truncation point
rtnorm.gibbs <- function(n, mu=0, sigma=1, a=-Inf, b=Inf)
{
# Draw from Uni(0,1)
F <- runif(n)
#Phi(a) und Phi(b)
Fa <- pnorm(a, mu, sd=sigma)
Fb <- pnorm(b, mu, sd=sigma)
# Truncated Normal Distribution, see equation (6), but F(x) ~ Uni(0,1),
# so we directly draw from Uni(0,1) instead of doing:
# x <- rnorm(n, mu, sigma)
# y <- mu + sigma * qnorm(pnorm(x)*(Fb - Fa) + Fa)
y <- mu + sigma * qnorm(F * (Fb - Fa) + Fa)
y
}
# Gibbs Sampler Implementation in R for Truncated Multivariate Normal Distribution
# (covariance case with sigma)
# Jayesh H. Kotecha and Petar M. Djuric (1999) :
# GIBBS SAMPLING APPROACH FOR GENERATION OF TRUNCATED MULTIVARIATE
# GAUSSIAN RANDOM VARIABLES
#
#
# @param n Anzahl der Realisationen
# @param mean Mittelwertvektor (k x 1) der Normalverteilung
# @param sigma Kovarianzmatrix (k x k) der Normalverteilung
# @param lower unterer Trunkierungsvektor (k x 1) mit lower <= Dx <= upper
# @param upper oberer Trunkierungsvektor (k x 1) mit lower <= Dx <= upper
# @param burn.in number of burn-in samples to be discarded
# @param start start value for Gibbs sampling
# @param thinning
rtmvnorm.gibbs <- function(n,
mean = rep(0, nrow(sigma)),
sigma = diag(length(mean)),
lower = rep(-Inf, length = length(mean)),
upper = rep( Inf, length = length(mean)),
burn.in.samples = 0,
start.value = NULL,
thinning = 1)
{
# We check only additional arguments like "burn.in.samples", "start.value" and "thinning"
if (thinning < 1 || !is.numeric(thinning) || length(thinning) > 1) {
stop("thinning must be a integer scalar > 0")
}
# dimension of X
d <- length(mean)
# number of burn-in samples
S <- burn.in.samples
if (!is.null(S)) {
if (S < 0) stop("number of burn-in samples must be non-negative")
}
# Take start value given by user or determine from lower and upper
if (!is.null(start.value)) {
if (length(mean) != length(start.value)) stop("mean and start value have non-conforming size")
if (any(start.value<lower || start.value>upper)) stop("start value is not inside support region")
x0 <- start.value
} else {
# Start value from support region, may be lower or upper bound, if they are finite,
# if both are infinite, we take 0.
x0 <- ifelse(is.finite(lower), lower, ifelse(is.finite(upper), upper, 0))
}
# Sample from univariate truncated normal distribution which is very fast.
if (d == 1)
{
X <- rtnorm.gibbs(n, mu=mean[1], sigma=sigma[1,1], a=lower[1], b=upper[1])
return(X)
}
# Ergebnismatrix (n x k)
X <- matrix(NA, n, d)
# Draw from Uni(0,1)
U <- runif((S + n*thinning) * d)
l <- 1
# List of conditional standard deviations can be pre-calculated
sd <- list(d)
# List of t(Sigma_i) %*% solve(Sigma) term
P <- list(d)
for(i in 1:d)
{
# Partitioning of Sigma
Sigma <- sigma[-i,-i] # (d-1) x (d-1)
sigma_ii <- sigma[i,i] # 1 x 1
Sigma_i <- sigma[i,-i] # 1 x (d-1)
P[[i]] <- t(Sigma_i) %*% solve(Sigma) # (1 x (d-1)) * ((d-1) x (d-1)) = (1 x (d-1))
sd[[i]] <- sqrt(sigma_ii - P[[i]] %*% Sigma_i) # (1 x (d-1)) * ((d-1) x 1)
}
x <- x0
# Runn chain from index (1 - #burn-in-samples):(n*thinning) and only record samples from j >= 1
# which discards the burn-in-samples
for (j in (1-S):(n*thinning))
{
# For all dimensions
for(i in 1:d)
{
# Berechnung von bedingtem Erwartungswert und bedingter Varianz:
# bedingte Varianz h�ngt nicht von x[-i] ab!
mu_i <- mean[i] + P[[i]] %*% (x[-i] - mean[-i])
# Transformation
F.tmp <- pnorm(c(lower[i], upper[i]), mu_i, sd[[i]])
Fa <- F.tmp[1]
Fb <- F.tmp[2]
x[i] <- mu_i + sd[[i]] * qnorm(U[l] * (Fb - Fa) + Fa)
l <- l + 1
}
if (j > 0) {
if (thinning == 1) {
# no thinning, take all samples except for burn-in-period
X[j,] <- x
}
else if (j %% thinning == 0){
X[j %/% thinning,] <- x
}
}
}
return(X)
}
# R-Implementation of Gibbs sampler with precision matrix H
#
# @param n number of random draws
# @param mean Mittelwertvektor (k x 1) der Normalverteilung
# @param H Precision matrix (k x k) der Normalverteilung
# @param lower unterer Trunkierungsvektor (k x 1) mit lower <= x <= upper
# @param upper oberer Trunkierungsvektor (k x 1) mit lower <= x <= upper
# @param burn.in number of burn-in samples to be discarded
# @param start start value for Gibbs sampling
# @param thinning
rtmvnorm.gibbs.Precision <- function(n,
mean = rep(0, nrow(H)),
H = diag(length(mean)),
lower = rep(-Inf, length = length(mean)),
upper = rep( Inf, length = length(mean)),
burn.in.samples = 0,
start.value = NULL,
thinning = 1)
{
# We check only additional arguments like "burn.in.samples", "start.value" and "thinning"
if (thinning < 1 || !is.numeric(thinning) || length(thinning) > 1) {
stop("thinning must be a integer scalar > 0")
}
# dimension of X
d <- length(mean)
# number of burn-in samples
S <- burn.in.samples
if (!is.null(S)) {
if (S < 0) stop("number of burn-in samples must be non-negative")
}
# Take start value given by user or determine from lower and upper
if (!is.null(start.value)) {
if (length(mean) != length(start.value)) stop("mean and start value have non-conforming size")
if (any(start.value<lower || start.value>upper)) stop("start value is not inside support region")
x0 <- start.value
} else {
# Start value from support region, may be lower or upper bound, if they are finite,
# if both are infinite, we take 0.
x0 <- ifelse(is.finite(lower), lower, ifelse(is.finite(upper), upper, 0))
}
# Sample from univariate truncated normal distribution which is very fast.
if (d == 1) {
X <- rtnorm.gibbs(n, mu=mean[1], sigma=1/H[1,1], a=lower[1], b=upper[1])
return(X)
}
# Ergebnismatrix (n x k)
X <- matrix(NA, n, d)
# Draw from U ~ Uni(0,1) for all iterations we need in advance
U <- runif((S + n*thinning) * d)
l <- 1
# Vector of conditional standard deviations sd(i | -i) = H_ii^{-1} = 1 / H[i, i] = sqrt(1 / diag(H))
# does not depend on x[-i] and can be precalculated before running the chain.
sd <- sqrt(1 / diag(H))
# start value of the chain
x <- x0
# Run chain from index (1 - #burn-in-samples):(n*thinning) and only record samples from j >= 1
# which discards the burn-in-samples
for (j in (1-S):(n*thinning))
{
# For all dimensions
for(i in 1:d)
{
# conditional mean mu[i] = E[i | -i] = mean[i] - H_ii^{-1} H[i,-i] (x[-i] - mean[-i])
mu_i <- mean[i] - (1 / H[i,i]) * H[i,-i] %*% (x[-i] - mean[-i])
# draw x[i | -i] from conditional univariate truncated normal distribution with
# TN(E[i | -i], sd(i | -i), lower[i], upper[i])
F.tmp <- pnorm(c(lower[i], upper[i]), mu_i, sd[i])
Fa <- F.tmp[1]
Fb <- F.tmp[2]
x[i] <- mu_i + sd[i] * qnorm(U[l] * (Fb - Fa) + Fa)
l <- l + 1
}
if (j > 0) {
if (thinning == 1) {
# no thinning, take all samples except for burn-in-period
X[j,] <- x
}
else if (j %% thinning == 0){
X[j %/% thinning,] <- x
}
}
}
return(X)
}
# Gibbs sampler with compiled Fortran code
# Depending on, whether covariance matrix Sigma or precision matrix H (dense or sparse format)
# is specified as parameter, we call either
# Fortran routine "rtmvnormgibbscov" (dense covariance matrix sigma),
# "rtmvnormgibbsprec" (dense matrix H) or "rtmvnormgibbssparseprec" (sparse precision matrix H).
#
# @param H precision matrix in sparse triplet format (i, j, v)
# Memory issues: We want to increase dimension d, and return matrix X will be (n x d)
# so if we want to create a large number of random samples X (n x d) with high d then
# we will probably also run into memory problems (X is dense). In most MCMC applications,
# we only have to create a small number n in high dimensions,
# e.g. 1 random sample per iteration (+ burn-in-samples).
# In this case we will not experience any problems. Users should be aware of choosing n and d appropriately
rtmvnorm.gibbs.Fortran <- function(n,
mean = rep(0, nrow(sigma)),
sigma = diag(length(mean)),
H = NULL,
lower = rep(-Inf, length = length(mean)),
upper = rep( Inf, length = length(mean)),
burn.in.samples = 0, start.value = NULL, thinning = 1)
{
# No checks of input arguments, checks are done in rtmvnorm()
# dimension of X
d <- length(mean)
# number of burn-in samples
S <- burn.in.samples
if (!is.null(S)) {
if (S < 0) stop("number of burn-in samples must be non-negative")
}
# Take start value given by user or determine from lower and upper
if (!is.null(start.value)) {
if (length(mean) != length(start.value)) stop("mean and start value have non-conforming size")
if (any(start.value<lower || start.value>upper)) stop("start value is not inside support region")
x0 <- start.value
} else {
# Start value from support region, may be lower or upper bound, if they are finite,
# if both are infinite, we take 0.
x0 <- ifelse(is.finite(lower), lower, ifelse(is.finite(upper), upper, 0))
}
# Sample from univariate truncated normal distribution which is very fast.
if (d == 1) {
if (!is.null(H)) {
X <- rtnorm.gibbs(n, mu=mean[1], sigma=1 / sigma[1,1], a=lower[1], b=upper[1])
} else {
X <- rtnorm.gibbs(n, mu=mean[1], sigma=sigma[1,1], a=lower[1], b=upper[1])
}
return(X)
}
# Ergebnismatrix (n x d)
X <- matrix(0, n, d)
# Call to Fortran subroutine
if (!is.null(H)){
if (!inherits(H, "sparseMatrix")) {
ret <- .Fortran("rtmvnormgibbsprec",
n = as.integer(n),
d = as.integer(d),
mean = as.double(mean),
H = as.double(H),
lower = as.double(lower),
upper = as.double(upper),
x0 = as.double(x0),
burnin = as.integer(burn.in.samples),
thinning = as.integer(thinning),
X = as.double(X),
NAOK=TRUE, PACKAGE="tmvtnorm")
} else if (inherits(H, "dgCMatrix")) { # H is given in compressed sparse column (csc) representation
ret <- .Fortran("rtmvnorm_sparse_csc",
n = as.integer(n),
d = as.integer(d),
mean = as.double(mean),
Hi = as.integer(H@i),
Hp = as.integer(H@p),
Hv = as.double(H@x),
num_nonzero = as.integer(length(H@x)),
lower = as.double(lower),
upper = as.double(upper),
x0 = as.double(x0),
burnin = as.integer(burn.in.samples),
thinning = as.integer(thinning),
X = as.double(X),
NAOK=TRUE, PACKAGE="tmvtnorm")
}
else { # H is given in sparse matrix triplet representation
# Es muss klar sein, dass nur die obere Dreiecksmatrix (i <= j) �bergeben wird...
sH <- as(H, "dgTMatrix") # precision matrix as triplet representation
# ATTENTION: sH@i and sH@j are zero-based (0..(n-1)), we need it as 1...n
ind <- sH@i <= sH@j # upper triangular matrix elements of H[i,j] with i <= j
ret <- .Fortran("rtmvnorm_sparse_triplet",
n = as.integer(n),
d = as.integer(d),
mean = as.double(mean),
Hi = as.integer(sH@i[ind]+1),
Hj = as.integer(sH@j[ind]+1),
Hv = as.double(sH@x[ind]),
num_nonzero = as.integer(sum(ind)),
lower = as.double(lower),
upper = as.double(upper),
x0 = as.double(x0),
burnin = as.integer(burn.in.samples),
thinning = as.integer(thinning),
X = as.double(X),
NAOK=TRUE, PACKAGE="tmvtnorm")
}
} else {
ret <- .Fortran("rtmvnormgibbscov",
n = as.integer(n),
d = as.integer(d),
mean = as.double(mean),
sigma = as.double(sigma),
lower = as.double(lower),
upper = as.double(upper),
x0 = as.double(x0),
burnin = as.integer(burn.in.samples),
thinning = as.integer(thinning),
X = as.double(X),
NAOK=TRUE, PACKAGE="tmvtnorm")
}
X <- matrix(ret$X, ncol=d, byrow=TRUE)
return(X)
}
# Gibbs sampling f�r Truncated Multivariate Normal Distribution
# with linear constraints based on Geweke (1991):
# This is simply a wrapper function around our rectangular sampling version...
#
# x ~ N(mu, sigma) subject to a <= Dx <= b
#
# alpha <= z <= beta
# mit alpha = a - D * mu, beta = b - D * mu
# z ~ N(0, T), T = D Sigma D'
# x = mu + D^(-1) z
#
# @param n Anzahl der Realisationen
# @param mean Mittelwertvektor (k x 1) der t-verteilung
# @param sigma Kovarianzmatrix (k x k) der t-Verteilung
# @param lower unterer Trunkierungsvektor (k x 1) mit lower <= x <= upper
# @param upper oberer Trunkierungsvektor (k x 1) mit lower <= x <= upper
# @param D Matrix for linear constraints, defaults to diagonal matrix
# @param burn.in number of burn-in samples to be discarded
# @param start start value for Gibbs sampling
# @param thinning
rtmvnorm.linear.constraints <-
function(n,
mean = rep(0, nrow(sigma)),
sigma = diag(length(mean)),
H = NULL,
lower = rep(-Inf, length = length(mean)),
upper = rep( Inf, length = length(mean)),
D = diag(length(mean)),
algorithm,...)
{
# dimension of X
d <- length(mean)
# check matrix D, must be n x n with rank n
if (!is.matrix(D) || det(D) == 0) {
stop("D must be a (n x n) matrix with full rank n!")
}
# create truncated multi-normal samples in variable Z ~ N(0, T)
# with alpha <= z <= beta
# Parameter-Transformation for given sigma:
# x ~ N(mean, sigma) subject to a <= Dx <= b
# define z = D x - D mu
# alpha <= z <= beta
# mit alpha = a - D * mu
# beta = b - D * mu
# z ~ N(0, T),
# T = D Sigma D'
# x = mu + D^(-1) z
# Parameter-Transformation for given H:
# x ~ N(mean, H^{-1})
# precision matrix in z is:
# T^{-1} = D'^{-1} H D^{-1} # (AB)^{-1} = B^{-1} %*% A^{-1}
alpha <- as.vector(lower - D %*% mean)
beta <- as.vector(upper - D %*% mean)
Dinv <- solve(D) # D^(-1)
if (!is.null(H)) {
Tinv <- t(Dinv) %*% H %*% Dinv
Z <- rtmvnorm(n, mean=rep(0, d), sigma=diag(d), H=Tinv, lower=alpha, upper=beta, algorithm=algorithm, ...)
} else {
T <- D %*% sigma %*% t(D)
Z <- rtmvnorm(n, mean=rep(0, d), sigma=T, H=NULL, lower=alpha, upper=beta, algorithm=algorithm, ...)
}
# For each z do the transformation
# x = mu + D^(-1) z
X <- sweep(Z %*% t(Dinv), 2, FUN="+", mean)
return(X)
}
################################################################################
if (FALSE) {
checkSymmetricPositiveDefinite(matrix(1:4, 2, 2), name = "H")
lower <- c(-1, -1)
upper <- c(1, 1)
mean <- c(0.5, 0.5)
sigma <- matrix(c(1, 0.8, 0.8, 1), 2, 2)
H <- solve(sigma)
D <- matrix(c(1, 1, 1, -1), 2, 2)
checkSymmetricPositiveDefinite(H, name = "H")
# 1. covariance matrix sigma case
# 1.1. rectangular case D == I
X0 <- rtmvnorm(n=1000, mean, sigma, lower, upper, algorithm="rejection")
X1 <- rtmvnorm(n=1000, mean=mean, sigma=sigma, lower=lower, upper=upper, algorithm="rejection")
X2 <- rtmvnorm(n=1000, mean=mean, sigma=sigma, lower=lower, upper=upper, algorithm="gibbsR")
X3 <- rtmvnorm(n=1000, mean=mean, sigma=sigma, lower=lower, upper=upper, algorithm="gibbs")
par(mfrow=c(2,2))
plot(X1)
plot(X2)
plot(X3)
cov(X1)
cov(X2)
cov(X3)
# 1.2. general linear constraints case D <> I
X1 <- rtmvnorm(n=1000, mean=mean, sigma=sigma, lower=lower, upper=upper, D=D, algorithm="rejection")
X2 <- rtmvnorm(n=1000, mean=mean, sigma=sigma, lower=lower, upper=upper, D=D, algorithm="gibbsR")
X3 <- rtmvnorm(n=1000, mean=mean, sigma=sigma, lower=lower, upper=upper, D=D, algorithm="gibbs")
par(mfrow=c(2,2))
plot(X1)
plot(X2)
plot(X3)
# 2. precision matrix case H
# 2.1. rectangular case D == I
X1 <- rtmvnorm(n=1000, mean=mean, H=H, lower=lower, upper=upper, algorithm="rejection")
X2 <- rtmvnorm(n=1000, mean=mean, H=H, lower=lower, upper=upper, algorithm="gibbsR")
X3 <- rtmvnorm(n=1000, mean=mean, H=H, lower=lower, upper=upper, algorithm="gibbs")
par(mfrow=c(2,2))
plot(X1)
plot(X2)
plot(X3)
# 2.2. general linear constraints case D <> I
X1 <- rtmvnorm(n=1000, mean=mean, H=H, lower=lower, upper=upper, D=D, algorithm="rejection")
X2 <- rtmvnorm(n=1000, mean=mean, H=H, lower=lower, upper=upper, D=D, algorithm="gibbsR")
X3 <- rtmvnorm(n=1000, mean=mean, H=H, lower=lower, upper=upper, D=D, algorithm="gibbs")
par(mfrow=c(2,2))
plot(X1)
plot(X2)
plot(X3)
}