Betancourt20
/
Data-Driven-Model-Predictive-Control-MPC-with-Stability-and-Robustness-Guarantees
Public
forked from shiivashaakeri/Data-Driven-Model-Predictive-Control-MPC-with-Stability-and-Robustness-Guarantees
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Compute_init_cond.py
37 lines (30 loc) · 1.06 KB
/
Compute_init_cond.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import numpy as np
from scipy.linalg import solve, block_diag
def compute_init_cond(sys, u_init, y_init):
"""
Computes the initial condition for a given system.
Parameters:
- sys: A system object with A, B, C, D matrices.
- u_init: Initial input.
- y_init: Initial output.
Returns:
- x0: The computed initial condition.
"""
# Get parameters
n = u_init.shape[1]
m = u_init.shape[0]
p = y_init.shape[0]
# Markov Parameter
markov = np.zeros((n*p, n*m))
for i in range(1, n+1):
for j in range(1, n+1):
if i > j:
markov[(i-1)*p:i*p, (j-1)*m:j*m] = sys['C'] @ np.linalg.matrix_power(sys['A'], i-j-1) @ sys['B']
elif i == j:
markov[(i-1)*p:i*p, (j-1)*m:j*m] = sys['D']
# Compute the initial condition
# Create the observability matrix
obsv_matrix = np.vstack([sys['C'] @ np.linalg.matrix_power(sys['A'], i) for i in range(n)])
# Solve for x0
x0 = solve(obsv_matrix, y_init.flatten() - markov @ u_init.flatten(), assume_a='pos')
return x0