
Parallel Runtime Interface for Fortran
A Multi-Image Solution for LLVM Flang

Dan Bonachea, Katherine Rasmussen, Brad Richardson, Damian Rouson
https://fortran.lbl.gov

November 2024

https://go.lbl.gov/prif

PRIF | BERKELEY LAB

02
Parallel Features

03
Design Overview

04
Progress

Outline

2

01
Motivation

05
Next Steps

PRIF | BERKELEY LAB

Why Parallel Fortran Matters

3

- Experiments on up to 130,560 processors
- 58% speedup with CAF relative to best multithreaded MPI

shifter algorithm on largest problem
- “the complexity required to implement… MPI-2 one-sided, in

addition to several other semantic limitations, is prohibitive.”

- Simulations on up to 65,536 cores
- “… CAF either draws level with MPI-3 or shows a

slight advantage over MPI-3”
- “CAF code is of course much easier to write and

maintain”

Garain, S., Balsara, D. S., & Reid, J. (2015).
Comparing Coarray Fortran (CAF) with MPI

for several structured mesh PDE
applications. Journal of Computational

Physics, 297, 237-253.

Preissl, R., Wichmann, N., Long,
B., Shalf, J., Ethier, S., &
Koniges, A. (2011, November).
Multithreaded global address
space communication techniques
for gyrokinetic fusion applications
on ultra-scale platforms. In
Proceedings of 2011 International
Conference for High Performance
Computing, Networking, Storage
and Analysis (pp. 1-11).

PRIF | BERKELEY LAB 4

Why Parallel Fortran Matters

Mozdzynski, G., Hamrud, M., & Wedi, N.
(2015). A partitioned global address
space implementation of the European
centre for medium range weather
forecasts integrated forecasting system.
The International Journal of High
Performance Computing Applications,
29(3), 261-273.

- Simulations on >60K cores
- “… performance improvement from

switching to CAF peaks at 21%
around 40K cores”

Rasmussen, S., Gutmann, E. D.,
Friesen, B., Rouson, D., Filippone, S., &

Moulitsas, I. (2018). Development and
performance comparison of MPI and

Fortran Coarrays within an atmospheric
research model. In Proceedings of
PAW-ATM 18: Parallel Applications

Workshop, Alternatives to MPI.

- “… we used up to 25,600 processes and found that at
every data point OpenSHMEM was outperforming MPI.”

- “The coarray Fortran with MPI backend stopped being
usable as we went over 2,000 processes… the
initialization time started to increase exponentially”

PRIF | BERKELEY LAB

Parallel Features in Modern Fortran

5

• Intrinsic subroutines
– Collective subroutines: CO_SUM, CO_MAX,

CO_MIN, CO_REDUCE, CO_BROADCAST
– Atomic subroutines: ATOMIC_ADD,

ATOMIC_AND, ATOMIC_CAS, ATOMIC_DEFINE,
ATOMIC_FETCH_ADD, ATOMIC_FETCH_AND,
ATOMIC_FETCH_OR, ATOMIC_FETCH_XOR,
ATOMIC_OR, ATOMIC_REF, ATOMIC_XOR

– Other subroutines: EVENT_QUERY
• Types, kind type parameters, and values

– Intrinsic derived types: EVENT_TYPE,
TEAM_TYPE, LOCK_TYPE, NOTIFY_TYPE

– Atomic kind type parameters:
ATOMIC_INT_KIND and
ATOMIC_LOGICAL_KIND

– Values: STAT_FAILED_IMAGE,
STAT_LOCKED, STAT_LOCKED_OTHER_IMAGE,
STAT_STOPPED_IMAGE, STAT_UNLOCKED,
STAT_UNLOCKED_FAILED_IMAGE

• Statements
– Synchronization

• Explicit: SYNC ALL, SYNC IMAGES,
SYNC MEMORY, SYNC TEAM

• Implicit: ALLOCATE, DEALLOCATE,
STOP, END, MOVE_ALLOC

– Events: EVENT POST, EVENT WAIT
– Notify: NOTIFY WAIT
– Error termination: ERROR STOP
– Locks: LOCK, UNLOCK
– Failed images: FAIL IMAGE
– Teams: FORM TEAM, CHANGE TEAM
– Critical sections: CRITICAL, END CRITICAL

• Coarray Accesses ([...])
• Intrinsic functions: NUM_IMAGES, THIS_IMAGE,

LCOBOUND, UCOBOUND, TEAM_NUMBER, GET_TEAM,
FAILED_IMAGES, STOPPED_IMAGES,
IMAGE_STATUS, COSHAPE, IMAGE_INDEX

PRIF | BERKELEY LAB

Motivation

6

What’s this for?

• Isolate a compiler’s support of the parallel
features of the language from any particular
details of the communication infrastructure

– Our group’s experience with
Berkeley UPC and OpenCoarrays
has shown this approach valuable

• Enable a compiler to target multiple
implementations of PRIF

– e.g. enable a hardware vendor to
supply their own parallel runtime

• Enable a PRIF implementation to be used
by multiple compilers

PRIF | BERKELEY LAB

Compiler

• Establish and initialize static coarrays prior to main
• Track corank of coarrays
• Track local coarrays for implicit deallocation when

exiting a scope
• Initialize a coarray with SOURCE= as part of

ALLOCATE statement
• Provide prif_critical_type coarrays for

CRITICAL constructs
• Provide final subroutine for all derived types that are

finalizable or that have allocatable components that
appear in a coarray

• Variable allocation status tracking, including use of
MOVE_ALLOC

Parallel Runtime

• Track coarrays for implicit deallocation at END TEAM
• Allocate and deallocate a coarray
• Reference a coindexed object
• Team stack abstraction
• FORM TEAM, CHANGE TEAM, END TEAM
• Intrinsic functions related to parallel Fortran, like

NUM_IMAGES, etc
• Atomic subroutines
• Collective subroutines
• Synchronization statements
• Events, notify
• Locks
• CRITICAL construct

Responsibilities

7

PRIF | BERKELEY LAB

PRIF Design Overview

8

Parallel Features Directly Translatable to Use of Fortran Library

call prif_this_image(image_index=me)

call prif_co_sum(&
 a, result_image=1_c_int)

call prif_put(&
 co_arr_coarray_handle, &
 INT([1], c_intmax_t), &
 some_calc(), &
 INT(STORAGE_SIZE(arr)/8, c_size_t), &
 C_LOC(co_arr))

me = THIS_IMAGE()

call CO_SUM(a, result_image=1)

co_arr[1] = some_calc()

PRIF | BERKELEY LAB

Why Define the Interface in Fortran?

● Motivation: community contributions and use by any Fortran compiler

● Proposition: Only need a subset of non-parallel Fortran 2018 features

○ assumed-type and assumed-rank arguments:
type(*), intent(in) :: array(..)

○ C interoperability:
type(c_ptr), integer(c_int), etc.

● Prototype: Caffeine

9

PRIF | BERKELEY LAB

Some Examples Influencing
Design Decisions

10

PRIF | BERKELEY LAB

Program Startup and Shutdown

11

Shortest Parallel Fortran Program

* Note: prif_stop also used in place of Fortran STOP statement

end

use prif
...
call prif_init(...)
...
call prif_stop(...)
end

PRIF | BERKELEY LAB

Program Startup and Shutdown Design Requirement

● prif_init

○ idempotent initialization of the PRIF library

● prif_stop

○ collective program exit

○ arguments equivalent to STOP statement options

● prif_error_stop

○ non-collective program exit

○ arguments equivalent to ERROR STOP statement options

12

PRIF | BERKELEY LAB

Coarray Design Requirements

● Need procedures to allocate and deallocate coarray
○ prif_allocate_coarray
○ prif_deallocate_coarray

● Need a handle for a coarray descriptor, separate from the coarray variable
○ gives PRIF implementation ability to track state for different coarrays
○ without requiring PRIF to understand compiler specific variable “descriptors”
○ prif_coarray_handle

13

PRIF | BERKELEY LAB

Static coarrays need allocated and (potentially)
initialized prior to main

14

program main
 ...
 type(prif_coarray_handle) :: h
 ...
 call prif_init(...)
 ...
 call prif_allocate_coarray(h, ...)
 ...
 call prif_deallocate_coarray(h, ...)
 ...
 call prif_stop(...)
end program

program main
 integer :: i[*]
end program

PRIF | BERKELEY LAB

Local coarrays are implicitly deallocated when exiting a
scope

15

subroutine sub
 integer, allocatable :: i[:]
 call might_allocate(i)
end subroutine

subroutine sub
 ...
 call might_allocate(...)
 if (allocated(...)) &
 call prif_deallocate_coarray(...)
end subroutine

The compiler must ensure that coarray (de)allocation updates the appropriate variable’s
allocation status so that it can know if prif_deallocate_coarray should be called at end of
scope.

PRIF | BERKELEY LAB

Derived types that are finalizable or that have
allocatable components can appear in a coarray

16

program main
 type :: t
 integer, allocatable :: a
 end type
 type(t), allocatable :: c[*]
 allocate(c[*])
 allocate(c%a)
 deallocate(c)
end program

program main
 ...
 call prif_allocate_coarray(...)
 call prif_allocate(...)
 call prif_deallocate_coarray(...)
 ...
end program

● Non-collective, non-coarray prif_allocate and prif_deallocate
● Communication (put/get) operations that work on non-coarray storage
● Compiler provided call-back to perform deallocation of components, call final subroutine,

and update a variable’s allocation status

PRIF | BERKELEY LAB

Coarrays can be implicitly deallocated at end team
statement

17

program main
 ...
 type(team_type) :: my_team
 type(t), allocatable :: c[:]
 ...
 form team (..., my_team)
 change team (my_team)
 call sub
 end team
contains
 subroutine sub
 allocate(c[*])
 allocate(c%a)
 end subroutine
end program

program main
 ...
 call prif_form_team(...)
 call prif_change_team(...)
 call sub
 call prif_end_team(...)
 ...
contains
 subroutine sub
 call prif_allocate_coarray(...)
 call prif_allocate(...)
 end subroutine
end program

PRIF | BERKELEY LAB

Teams Design Requirements

PRIF Implementation must track which coarrays are allocated during a CHANGE TEAM construct
so that they can be deallocated at the matching END TEAM statement

PRIF passes coarray handle to coarray cleanup call-back, and provides a way for the compiler
to store and query information in the coarray descriptor to keep track of which coarray variable
is being deallocated

18

PRIF | BERKELEY LAB

Progress

• Finished PRIF draft specification Version 0.4
• Have submitted PRIF specification in a design doc to LLVM-Project Repository

– We’ve received some review comments and are working on PRIF 0.5
• Caffeine, LBL’s implementation of PRIF, has partial or full support for the following features:

– Program launch and termination: prif_init, prif_stop
– Image enumeration: prif_this_image and prif_num_images
– Image Queries: prif_image_index
– Coarray allocation: prif_allocate_coarray, prif_deallocate_coarray,

prif_allocate, prif_deallocate
– Contiguous RMA: prif_put, prif_get, prif_put_indirect,

prif_get_indirect
– Global synchronization: prif_sync_all
– Collective subroutines: prif_co_min, prif_co_max, prif_co_sum,

prif_co_broadcast, and prif_co_reduce
– Teams: prif_form_team, prif_change_team, prif_end_team

19

PRIF | BERKELEY LAB

Next Steps

• Produce PRIF Version 0.5
• Finish implementation in Caffeine
• Integration into flang

– We are actively collaborating with SiPearl on this front
– We’d love more help

• Solicit Feedback:
– LLVM Discourse Post
– Email: fortran@lbl.gov
– Specification Working Draft: https://go.lbl.gov/prif
– We welcome issues and PRs at https://go.lbl.gov/caffeine

20

https://discourse.llvm.org/t/rfc-parallel-runtime-interface-for-fortran-prif/75801
mailto:fortran@lbl.gov
https://go.lbl.gov/prif
https://go.lbl.gov/prif

PRIF | BERKELEY LAB

Acknowledgements

21

● This research was supported by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of the U.S. Department of Energy Office of Science and the National
Nuclear Security Administration

● This material is based upon work supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research.

● This research used resources of the National Energy Research Scientific Computing
Center (NERSC), a U.S. Department of Energy Office of Science User Facility located at
Lawrence Berkeley National Laboratory, operated under Contract No.
DE-AC02-05CH11231

PRIF | BERKELEY LAB

Questions?

22

Email: fortran@lbl.gov

Fortran efforts at LBNL: fortran.lbl.gov

Specification Working Draft: go.lbl.gov/prif

mailto:lbl-flang@lbl.gov
https://fortran.lbl.gov
https://go.lbl.gov/prif

PRIF | BERKELEY LAB

Who We are

We have experience developing parallel runtimes, parallel applications, Flang frontend parallel
features, and parallel unit tests:

• OpenCoarrays: Fanfarillo, A., Burnus, T., Cardellini, V., Filippone, S., Nagle, D., & Rouson, D. (2014). “OpenCoarrays: open-source
transport layers supporting coarray Fortran compilers.” In Proceedings of the 8th International Conference on Partitioned Global
Address Space Programming Models (pp. 1-11). doi: 10.1145/2676870.2676876

• Caffeine: Rouson, D., & Bonachea, D. (2022). “Caffeine: CoArray Fortran Framework of Efficient Interfaces to Network Environments.”
In 2022 IEEE/ACM Eighth Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC) (pp. 34-42). IEEE. doi:
10.25344/S4459B

• Flang: Rasmussen, K., Rouson, D., George, N., Bonachea, D., Kadhem, H., & Friesen, B. (2022) "Agile Acceleration of LLVM Flang
Support for Fortran 2018 Parallel Programming", Research Poster at the International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC22). doi: 10.25344/S4CP4S

• Berkeley UPC: Chen, Bonachea, Duell, Husbands, Iancu, Yelick,, "A Performance Analysis of the Berkeley UPC Compiler",
Proceedings of the International Conference on Supercomputing (ICS), ACM, June 23, 2003, 63--73, doi: 10.1145/782814.782825

• UPC++: Bachan, Baden, Hofmeyr, Jacquelin, Kamil, Bonachea, Hargrove, Ahmed, "UPC++: A High-Performance Communication
Framework for Asynchronous Computation", 33rd IEEE International Parallel & Distributed Processing Symposium (IPDPS'19), May
2019, doi: 10.25344/S4V88H

23

https://doi.org/10.1145/2676870.2676876
https://doi.org/10.1145/2676870.2676876
https://doi.org/10.1145/2676870.2676876
https://doi.org/10.1145/2676870.2676876
https://dx.doi.org/10.25344/S4459B
https://dx.doi.org/10.25344/S4459B
https://escholarship.org/uc/item/01h204x9
https://escholarship.org/uc/item/01h204x9
https://dx.doi.org/10.25344/S4CP4S
https://escholarship.org/uc/item/91v1j2jw
https://dx.doi.org/10.1145/782814.782825
https://escholarship.org/uc/item/1gd059hj
https://escholarship.org/uc/item/1gd059hj
https://dx.doi.org/10.25344/S4V88H

PRIF | BERKELEY LAB

Why not OpenCoarrays?

• Is hardwired to gfortran, e.g., many procedures manipulate gfortran-specific descriptors
• The interface implicitly assumes an MPI backend
• Only the MPI layer is maintained (GASNet & OpenSHMEM layers are legacy codes)
• Lacks full support for some parallel features (e.g., teams).
• Has a bus factor of ~1.

24

https://en.wikipedia.org/wiki/Bus_factor

PRIF | BERKELEY LAB

What is GASNet?

25

