
The Tenth Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC2024)

Parallel Runtime Interface for Fortran (PRIF):
A Multi-Image Solution for LLVM Flang

Dan Bonachea, Katherine Rasmussen, Brad Richardson, Damian Rouson
Computer Languages and Systems Software Group and NERSC

Lawrence Berkeley National Laboratory, USA
fortran.lbl.gov

fortran@lbl.gov

Abstract—Fortran compilers that provide support for For-
tran’s native parallel features often do so with a runtime library
that depends on details of both the compiler implementation and
the communication library, while others provide limited or no
support at all. This paper introduces a new generalized interface
that is both compiler- and runtime-library-agnostic, providing
flexibility while fully supporting all of Fortran’s parallel features.
The Parallel Runtime Interface for Fortran (PRIF) was developed
to be portable across shared- and distributed-memory systems,
with varying operating systems, toolchains and architectures. It
achieves this by defining a set of Fortran procedures correspond-
ing to each of the parallel features defined in the Fortran standard
that may be invoked by a Fortran compiler and implemented by
a runtime library. PRIF aims to be used as the solution for LLVM
Flang to provide parallel Fortran support. This paper also briefly
describes our PRIF prototype implementation: Caffeine.

Index Terms—Fortran, Parallel Fortran, HPC, PGAS, RMA,
LLVM Flang, Runtime Libraries, Caffeine, GASNet-EX

I. INTRODUCTION

A. Parallel Fortran

Fortran plays important roles in fields ranging from
weather [1] and climate [2] to nuclear energy [3], aerospace
engineering [4], and fire protection engineering [5]. If you
looked at a weather forecast today, received electricity from a
power plant licensed by the U. S. Nuclear Regulatory Com-
mission, rode in any one of numerous car or aircraft models,
or live in one of 195 countries that signed the Paris climate
accord, then Fortran codes impacted your life in one or more
ways today even before you encountered this paper. Teams
are also writing Fortran software in emerging disciplines such
as deep learning [6, 7] and to develop tools in areas where
Fortran has not been typically employed, such as package
management [8]. Fortran thus remains a key component in the
High-Performance Computing (HPC) software ecosystem [9].

As of the 2008 standard [10], Fortran is a natively parallel
language, offering Single-Program, Multiple-Data (SPMD)
parallelism in the form of multi-image (multi-process) execu-
tion and a Partitioned Global Address Space (PGAS) shared
memory abstraction that seamlessly supports both single-node
deployments and large-scale distributed-memory architectures.
The term Coarray Fortran has been used broadly to refer to
the features in the language that are related to parallelism.
However, there are multiple features, such as the collective
subroutines, that do not have any coarray involvement and

as such, we prefer the term “Parallel Fortran”. We use this
term to refer to the entire set of features in Fortran that
are provided to achieve multi-image parallelism. This feature
set includes coarrays, collective subroutines, teams, synchro-
nization, atomics, locks, events, critical, and notifications.
For the purposes of this paper, the term does not include
language features focused on single-image parallelism, such
as DO CONCURRENT, ELEMENTAL procedures, and array
expressions. Table 1 defines some of the other Fortran terms
used throughout this paper.

The full Parallel Fortran feature set is extensive, non-trivial,
and there are a large number of inter-related parallel features
that are required to be fully Fortran 2023 compliant [11]. By
defining a standard interface to a parallel runtime library, we
can lower the burden on compiler teams to support the parallel
features, by allowing a separate team to take responsibility for
their implementation.

B. Motivation and Objectives

As stated in our paper about the Caffeine parallel runtime
library, published in LLVM-HPC2022 [12], LLVM Flang is
an important addition to LLVM and to the Fortran ecosys-
tem. As expressed in said paper, we have used test-driven
development techniques to contribute both compile-time, static
semantics tests related to Parallel Fortran and compile-time
error checking to the compiler [13]. The Fortran feature
support in LLVM Flang has increased significantly since

TABLE 1
FORTRAN STANDARD TERMS AND DEFINITIONS (ADAPTED FROM [11])

Term Definition
intrinsic entity or operation defined in the Fortran standard and

accessible without further definition or specification
image instance of a Fortran program, usually corresponding

to an OS-level process
team ordered image set created by a FORM TEAM statement,

or the initial ordered set of all images
coarray data structure partitioned across a team’s images and

accessible by each image in the corresponding team
rank number of array dimensions of a data entity (zero for

a scalar entity)
corank number of codimensions of a data entity (zero for

entities that are not coarrays)
coindexed object named scalar coarray variable followed by an image

selector (an expression including square brackets)

c⃝2024 LBNL doi:10.25344/S4N017 1

https://fortran.lbl.gov
mailto:fortran@lbl.gov
https://doi.org/10.25344/S4N017

Bonachea, Rasmussen, Richardson, Rouson: Parallel Runtime Interface for Fortran (PRIF)

our reporting in the Caffeine paper [12] and the compiler
now may be used to compile many single-image Fortran
programs. However, we believe that the addition of support
for Parallel Fortran will greatly expand LLVM Flang’s utility
and provide more options to Fortran developers wishing to
use Parallel Fortran. In exploring solutions for Parallel Fortran
support in LLVM Flang, we considered OpenCoarrays [14],
but it was deemed an unsuitable solution, partially because it
requires a gfortran-specific object descriptor. Instead, we have
developed a generalized interface expressed in Fortran called
Parallel Runtime Interface for Fortran (PRIF). The semantics
of PRIF procedures make no assumptions about the exact
implementation of a compiler’s object descriptor. Instead PRIF
empowers the compiler to make the necessary arrangements
and procedure calls which provide any necessary details in a
uniform way through the interface.1 A standardized, general-
ized interface designed to avoid baked-in assumptions related
to specific compilers or runtime libraries frees the compiler
from depending on a single runtime library, and vice versa.

An analogous approach was deployed by our research
group in the design of the Berkeley UPC Runtime Library
(UPCR) [15], a standardized runtime interface for implement-
ing the communication operations in UPC. UPC [16, 17] is
a PGAS extension to ISO C which was developed contem-
poraneously with Coarray Fortran [18] and shares many of
the same characteristic parallel language features. UPCR suc-
cessfully exposed a portable, high-performance and network-
independent interface implementing the parallel features of
UPC over the GASNet [19] communication system. UPCR
was eventually targeted by four different UPC compilers devel-
oped by several institutions [20–23]. UPCR enables efficient
UPC language execution across dozens of OS, architecture and
network combinations [24], encompassing platforms from lap-
tops to supercomputers. This work demonstrated the value of

1It is worth noting that many PRIF implementations are likely to make
internal use of the Fortran-specified C interoperability features, and especially
requiring the use of the CFI_c_desc_t.

Compiled Fortran Code

Compiler Runtime

Parallel Runtime

Communication Library
(i.e. GASNet, MPI, SHMEM, etc.)

Network Hardware
(InfiniBand, Slingshot, Aries,

Omni-Path, Ethernet, …)

PRIF

Parallel
Fortran Code Compiler

Runtime
library-
independent

Compiler-
independent

Language-
independent

Fig. 1. PRIF’s role in a Parallel Fortran software stack

having a standardized interface to an underlying runtime sys-
tem. Other types of projects which have demonstrated value in
analogous situations include the Java bytecode interface [25],
and processor instruction set architectures (ISA) [26].

Based on the experiences outlined in [12], we propose that
an interface for supporting Fortran’s parallel features should
be specified in Fortran because:

1) We posit that a subset of modern Fortran’s non-parallel
features are sufficient to write a runtime library, mostly
in Fortran, that provides the parallel Fortran features.

2) Furthermore, we maintain that the use of type-agnostic
procedure arguments liberates the runtime from directly
referencing compiler-specific data structures, enabling the
parallel runtime to be portable across compilers.

3) We also suggest that using type- and rank-agnostic ar-
guments (features that first appeared in Fortran’s 2018
standard [27]) reduces the complexity of the implemen-
tation of certain PRIF procedures.

4) Finally, a prototype implementation exists, Caffeine [28],
that deploys these techniques to deliver a portable im-
plementation of Fortran’s parallel features, suitable for
eventual adoption into compilers such as LLVM Flang.

Writing a parallel runtime library in Fortran opens the
door to contributions from any Fortran developer and use
by any Fortran compiler, which further broadens the po-
tential community of contributors and adopters. To the best
of our knowledge, our implementation-language choice and
compiler-independent design contrast starkly with every other
parallel runtime library developed for Fortran to date.

Since the Caffeine paper previously presented in this work-
shop [12], we began development of PRIF, in response to
requests from the LLVM and Fortran community for an
open runtime standard that could support multiple independent
implementations. In the course of that work, a number of
discoveries were made that have informed and updated our
approach relative to the original paper. One notable change is
replacing type- and rank-agnostic arguments in many proce-
dures with the passing of pointers to type-erased storage. This
change largely arose from a requirement to support coarray
communication of user-defined and non-interoperable types,
as well as metadata associated with unspecified aspects of
Fortran object representation (e.g., the compiler-specific bit-
level representation of Fortran’s allocatable components). The
PRIF procedures that provide support for Fortran’s collective
subroutines are notable exceptions where some type- and rank-
agnostic arguments remain.

C. Organization

The rest of this paper is organized as follows: Section II
describes the PRIF interface itself and discusses the role of
the compiler. Section III presents significant design challenges
that were encountered during the design of PRIF, and how
they were resolved. Section IV presents the current status of
Caffeine, our prototype implementation of PRIF, along with
future work, and we conclude in Section V.

2

Bonachea, Rasmussen, Richardson, Rouson: Parallel Runtime Interface for Fortran (PRIF)

TABLE 2
DELEGATION OF RESPONSIBILITIES BETWEEN THE FORTRAN COMPILER AND THE PRIF IMPLEMENTATION

Fortran PRIF
Responsibility compiler library
Establish and initialize static coarrays prior to main X
Track corank of coarrays X
Track local coarrays for implicit deallocation when exiting a scope X
Initialize a coarray with SOURCE= as part of ALLOCATE X
Provide prif_critical_type coarrays for CRITICAL X
Track variable allocation status, including resulting from use of MOVE_ALLOC X
Provide a finalization subroutine for each coarray allocation of derived type that is
finalizable or has allocatable components

X

Intrinsics related to parallelism, e.g., NUM_IMAGES, COSHAPE, IMAGE_INDEX X
Allocate and deallocate a coarray X
Reference a coindexed object X
Team statements/constructs: FORM TEAM, CHANGE TEAM, END TEAM X
Team stack abstraction X
Track coarrays for implicit deallocation at END TEAM X
Atomic subroutines, e.g., ATOMIC_FETCH_ADD X
Collective subroutines, e.g., CO_BROADCAST, CO_SUM X
Synchronization statements, e.g., SYNC ALL, SYNC TEAM X
Events: EVENT POST, EVENT WAIT X
Locks: LOCK, UNLOCK X
CRITICAL construct X
NOTIFY WAIT statement X

II. THE INTERFACE

A. The Specification

The PRIF Specification [29] provides a clear definition of
the interface for both compiler-writers and runtime library
developers. While the latest revision of the PRIF specification
provides the technical interface details required to implement
or target PRIF, this paper supplies rationale underlying many
of the design decisions that have shaped PRIF and explains
why PRIF is an important addition to LLVM Flang and
the Fortran ecosystem. This section presents a sampling of
representative interfaces specified by PRIF, in order to provide
a concrete basis for illustrating the interface design decisions.

The PRIF Specification defines procedure interfaces with
the required number and ordering of arguments, and the
required types, kinds and intent of those arguments. The
document also outlines the required derived types and named
constants that are needed for the interface. Additionally, the
specification includes some rationale, notes for the developers
of the compiler or the runtime library, a meticulous change
log, and a section that discusses potential future additions to
the interface. Additional PRIF design rationale is presented in
this paper’s §III. An important goal of the PRIF Specification
is delineating the responsibilities for implementing the various
parallel Fortran features, as outlined in Table 2. An X in the
“Fortran compiler” column indicates that the compiler has the
primary responsibility for that task, while an X in the “PRIF
library” column indicates that the compiler will invoke PRIF to
perform the task and the PRIF-compliant library has primary
responsibility for the task’s implementation.

B. The Compiler

As mentioned earlier, PRIF is designed as a standardized
interface to any conformant runtime library supporting the
parallel features. It is the compiler’s responsibility to orches-
trate procedure calls to the PRIF library, as dictated by the
invocations of parallel features in the Fortran source program.
While this could potentially be achieved through source-to-
source transformation, we expect most compilers will use
later phases of processing to accomplish this. As shown in
Figure 1, the implementation of PRIF will supplement the
compiler’s own runtime library that is used to support non-
parallel features.

C. The prif Module

PRIF-compliant runtime libraries define a module named
prif, which contains publicly accessible definitions of all of
the types, named constants and procedure interfaces outlined
in the PRIF Specification. The compiler will compile Fortran
portions of the PRIF library implementation and hence have
access to their definitions in the same manner as it would for
other Fortran modules. PRIF deliberately does not mandate
that different PRIF implementations be ABI-interchangeable,
maximizing flexibility for library implementations.

D. ISO Fortran Env Types and Named Constants

In the Fortran language, the ISO_FORTRAN_ENV mod-
ule defines a number of intrinsic derived types and named
constants that are involved in the parallel feature-set. These
include the derived types TEAM_TYPE, EVENT_TYPE,
LOCK_TYPE, and NOTIFY_TYPE, which are used to sup-
port teams, events, locks, and notifications, respectively.
Named constants from the same module which are in-
volved in Parallel Fortran include ATOMIC_INT_KIND,

3

Bonachea, Rasmussen, Richardson, Rouson: Parallel Runtime Interface for Fortran (PRIF)

1 module subroutine prif_allocate_coarray(&
2 lcobounds, ucobounds, lbounds, ubounds, element_size, final_func, &
3 coarray_handle, allocated_memory, stat, errmsg, errmsg_alloc)
4 implicit none
5 integer(c_intmax_t), dimension(:), intent(in) :: lcobounds, ucobounds
6 integer(c_intmax_t), dimension(:), intent(in) :: lbounds, ubounds
7 integer(c_size_t), intent(in) :: element_size
8 type(c_funptr), intent(in) :: final_func
9 type(prif_coarray_handle), intent(out) :: coarray_handle

10 type(c_ptr), intent(out) :: allocated_memory
11 integer(c_int), intent(out), optional :: stat
12 character(len=*), intent(inout), optional :: errmsg
13 character(len=:), allocatable, intent(inout), optional :: errmsg_alloc
14 end subroutine

Fig. 2. The interface for prif_allocate_coarray

ATOMIC_LOGICAL_KIND, CURRENT_TEAM and many oth-
ers. The Fortran standard mandates that compilers provide
the ISO_FORTRAN_ENV module to users, and the PRIF
Specification in turn delineates that the runtime library imple-
mentation provides the definitions for these relevant intrinsic
derived types and named constants through equivalents in the
prif module.

The components comprising the PRIF definitions of the
Fortran intrinsic derived types are deliberately unspecified
by PRIF, and to ensure portability the compiler should not
hard-code reliance on those details. However, at compile-time
the detailed representation corresponding to a given PRIF
implementation will be visible to the compiler in the interface
declarations of the prif module.

E. PRIF-specific types

The interface also defines two PRIF-specific helper
types, which are required to support the PRIF procedures:
prif_coarray_handle and prif_critical_type.
These types should not appear in normal Fortran code, but
provide runtime implementations a place to keep relevant
metadata and enable the compiler to orchestrate passing it back
where appropriate.

F. PRIF-specific Named Constants

PRIF also specifies additional named constants, not re-
quired by the Fortran standard, that provide important in-
formation to the compiler when invoking certain PRIF pro-
cedures. For example, PRIF_STAT_OUT_OF_MEMORY may
be returned from calls to prif_allocate_coarray or
prif_allocate when a low-memory condition has oc-
curred.

G. PRIF Procedures

The remainder of the PRIF Specification deals with the
interfaces for the PRIF procedures. For each intrinsic For-
tran procedure related to multi-image parallelism, there are
corresponding prif module procedures. For example, in

1 ! Example coarray declaration in Fortran:
2 integer :: coarr(10)[*]
3

4 ! Equivalent compiler-generated PRIF code:
5 integer(c_int) :: ni
6 call prif_num_images(ni)
7 call prif_allocate_coarray(&
8 lcobounds=[1_c_intmax_t], &
9 ucobounds=[ni], &

10 lbounds=[1_c_intmax_t)], &
11 ubounds=[10_c_intmax_t], &
12 element_size=int_size_in_bytes, &
13 final_func=c_null_funptr, &
14 coarray_handle=coarr_coarray_handle, &
15 allocated_memory=coarr_mem)

Fig. 3. Fortran coarray declaration and equivalent PRIF procedure call

order to support the Fortran intrinsic function NUM_IMAGES,
PRIF specifies the prif_num_images module procedure.
The remaining features of Parallel Fortran, such as coar-
ray declarations and references, or synchronization state-
ments, also have corresponding PRIF procedures, such as
prif_allocate_coarray or prif_sync_all. The
constraints and semantics associated with the arguments and
call to a given prif module procedure match those of the
analogous argument to the Parallel Fortran feature, except
where explicitly specified otherwise. Below we describe the
interfaces and semantics for some of the key PRIF procedures
to illustrate the design and conventions of PRIF.

1) prif_allocate_coarray: Figure 2 demonstrates
the interface for prif_allocate_coarray. This call is
invoked collectively by compiler-generated code to construct
every coarray in the program, regardless of how the coarray
is constructed at the Fortran syntax level. So for example,
every ALLOCATE statement that allocates a coarray object will
invoke prif_allocate_coarray once for each coarray.

4

Bonachea, Rasmussen, Richardson, Rouson: Parallel Runtime Interface for Fortran (PRIF)

1 module subroutine prif_put(&
2 image_num, coarray_handle, offset, current_image_buffer, &
3 size_in_bytes, stat, errmsg, errmsg_alloc)
4 implicit none
5 integer(c_int), intent(in) :: image_num
6 type(prif_coarray_handle), intent(in) :: coarray_handle
7 integer(c_size_t), intent(in) :: offset
8 type(c_ptr), intent(in) :: current_image_buffer
9 integer(c_size_t), intent(in) :: size_in_bytes

10 integer(c_int), intent(out), optional :: stat
11 character(len=*), intent(inout), optional :: errmsg
12 character(len=:), allocatable, intent(inout), optional :: errmsg_alloc
13 end subroutine

Fig. 4. The interface for prif_put

Fortran also allows coarrays to be constructed statically (e.g.,
as module or common-block variables), and the compiler
targeting PRIF is also responsible for inserting appropriate
calls to prif_allocate_coarray for each such coarray
as part of program initialization. Figure 3 shows an example of
a coarray declaration in Fortran, and some corresponding code
the compiler could generate that invokes PRIF to construct that
coarray.

The salient details of the prif_allocate_coarray
arguments and calling convention are as follows:

• The call is collective over all the images in the current
team, who must all pass compatible arguments for con-
structing corresponding coarrays.

• The call constructs a coarray descriptor and returns a
prif_coarray_handle value that acts as a han-
dle to that descriptor. Many PRIF calls accept a
prif_coarray_handle as a reference to a given
coarray descriptor.

• The lcobounds, ucobounds arguments specify the
cobounds for the coarray being constructed. The PRIF
implementation tracks this information in the coarray
descriptor, and uses it to answer future queries on the
coarray (e.g., the COSHAPE intrinsic which is supported
using prif_coshape).

• The prif_allocate_coarray call notably receives
deliberately limited information regarding the static type
of the coarray. This static information is never di-
rectly passed to PRIF, because in general coarrays may
be defined over user-defined derived types that are
program-specific and whose details are unavailable to the
PRIF implementation. Instead, the element_size and
lbounds, ubounds arguments respectively pass the
type-erased storage size and array bounds of the opaque
memory that should be allocated to back the coarray
elements.

• The allocated_memory argument returns a c_ptr
to the caller referencing the uninitialized storage that
serves as the coarray element storage for the calling

image. The compiler is responsible for initializing this
storage (as appropriate) and associating the element mem-
ory with the relevant coarray variable.

2) prif_put: Once a coarray has been allocated, it can
be used in Remote Memory Access (RMA) operations that
read or write data stored in the coarray on any image. For
example, a Fortran-level assignment into a coindexed object
may be translated into a call to the prif_put subroutine, the
simplest in a family of procedures that can be used to copy
local data into a remote coarray.

Figure 4 presents the interface for the prif_put subrou-
tine. The pertinent details to notice are as follows:

• The target image is selected by the scalar integer
image_num argument, which identifies the image index
in the initial team of all images. This notably differs
from the richer Fortran-level image selectors, where
user-provided cosubscripts are interpreted relative to the
cobounds of the coarray, and also optionally a provided
team specifier, which defaults to the current team. PRIF
instead provides the prif_image_index subroutine
that mirrors the IMAGE_INDEX intrinsic and performs
translation of cosubscripts for a given coarray into a scalar
image index in a selected team. PRIF deliberately factors
this image translation work out of the RMA interface,
enabling compiler optimizations such as common sub-
expression elimination to hoist redundant image transla-
tion computation out of loops.

• The selected data to be updated in the coarray is
identified to prif_put through the combination of
a prif_coarray_handle which names a coarray
descriptor, an offset in bytes from the beginning of
the coarray elements, and a size_in_bytes indicating
the contiguous amount of data to be copied. This is
deliberately a type-less interface, which allows it to
operate on coarrays of any type without knowledge of the
underlying type declarations and unspecified/compiler-
specific layout information. The compiler is responsible
for using the static type information associated with the

5

Bonachea, Rasmussen, Richardson, Rouson: Parallel Runtime Interface for Fortran (PRIF)

coindexed object to compute the byte offset and length
in bytes of the access operation.

• The current_image_buffer argument is a c_ptr
referencing the start of the source data on the calling
image. All put operations in PRIF semantically block
on source completion, meaning the source data is fully
“consumed” before the call returns, allowing the caller
to overwrite or reclaim that memory. In practice this
generally means the PRIF implementation has either
copied-out the source data (e.g., into a temporary staging
location) or injected it into a reliable network transmis-
sion. Note that return from the prif_put call does NOT
imply the data transfer has been committed into remote
coarray storage (i.e., remote completion). PRIF follows
the Fortran memory consistency model, which specifies
that image control statements (such as SYNC ALL, i.e.,
prif_sync_all) are used to order parallel execution
segments and establish remote completion of RMA ac-
cesses.

The arguments to prif_get (used for reads of coindexed
objects) are identical to those of prif_put (and hence
omitted for brevity); the only salient semantic difference is
the direction of data copy is reversed. PRIF specifies an entire
family of prif_put and prif_get subroutines, which
capture a variety of Fortran-level use cases: contiguous versus
non-contiguous (i.e., strided) data, direct versus indirect access
(§III-B), and use of the Fortran 2023 NOTIFY= specifier for
coindexed assignment.

III. TECHNICAL CONSIDERATIONS FOR THE PRIF DESIGN

A. Communication library

One of the design goals of PRIF is to insulate the Fortran
compiler from details of the communication libraries used
to implement multi-image communication across a variety
of parallel system architectures. As such, much of the PRIF
design was influenced by considering how different commu-
nication libraries could be used to implement the runtime
library. Caffeine [28], our prototype implementation of PRIF,
targets the GASNet-EX [30] communication library. GASNet-
EX is a language-independent, networking middleware layer
that provides network-independent, high-performance commu-
nication primitives for HPC, including one-sided RMA and
Active Messages. We also envision an implementation of PRIF
that targets the widely deployed Message Passing Interface
(MPI) communication library, in particular utilizing the one-
sided passive-target MPI RMA interfaces to implement PRIF
coarray access routines and atomic memory operations. In
particular, the design of PRIF’s direct versus indirect accesses
described in the next section was directly influenced by the
desire to enable efficient implementation of important common
cases using the MPI RMA window abstraction.

B. Symmetric and Non-symmetric Shared Objects

Fortran coarrays are shared objects, meaning that any image
in a parallel execution can perform RMA operations (puts and
gets) to access the elements of a coarray. These accesses are

one-sided, meaning that only the image initiating the operation
is explicitly involved in the RMA.

Fortran specifies that coarray allocation and deallocation
are always collective operations, meaning that all images in
the current team participate in (and synchronize during) the
allocation and deallocation of a coarray, and that all images
agree on the identity and size of the corresponding coarrays.
This design philosophy enables an implementation strategy
known as symmetric shared heap management, whereby coar-
ray objects are positioned at memory locations across all
images in a manner that maintains a symmetric property.

This technique imparts several implementation benefits.
Most fundamentally, it reduces the amount of metadata re-
quired to perform one-sided RMA by ensuring that a memory
reference for a coarray element on any remote image can
be computed mathematically from the address of the corre-
sponding local element, without additional communication. A
second important benefit arising from the collective allocation
of shared memory objects is that it provides the runtime
library the opportunity to efficiently exchange information
(e.g., network-level memory registration keys) to accelerate
later RMA operations involving the coarray.

If coarray elements were the only shared objects, then the
entire shared memory heap could be managed in a symmetric
manner, and the design of PRIF would be greatly simplified.
However, Fortran also allows remote access to objects that
were not allocated during any coarray allocation, but are reach-
able via indirection through a coarray. One specific example
of this is a coarray of derived type with an allocatable or
pointer component. The target memory of such a compo-
nent is allocated non-collectively by the image with affinity,
and the allocation of the target object referenced by that
component can happen long after the coarray itself is allocated,
or even before in the case of a pointer component. Allo-
cation of such target objects is non-collective and hence non-
symmetric, as there is no guaranteed correspondence in the
size (or existence) of such objects across images. Further, there
is no guaranteed “binding” between the storage backing the
coarray and the storage backing these indirected components
(in particular, they need not reside at a fixed offset from the
base of the coarray storage) yet they are nevertheless remotely
accessible by Fortran semantics. We refer to such objects as
non-symmetric shared objects.

This language semantic imposes a requirement on com-
pliant runtime implementations, and in turn also on the
PRIF Specification to expose capabilities fulfilling this re-
quirement. PRIF deals with this situation by providing two
flavors of shared heap allocation: symmetric/collective allo-
cation of coarrays (via prif_allocate_coarray and
prif_deallocate_coarray), and non-symmetric/non-
collective allocation of other potentially shared objects (via
prif_allocate and prif_deallocate).

Correspondingly, many communication operations in PRIF
have both a “direct” procedure variant that operates on
symmetric shared objects (those residing directly in coarray
element storage), and an “indirect” procedure variant that

6

Bonachea, Rasmussen, Richardson, Rouson: Parallel Runtime Interface for Fortran (PRIF)

operates on non-symmetric shared objects (those reachable
via one or more allocatable or pointer components of
a derived-type coarray). The key interface distinction is that
direct access variants represent the target memory location
using a combination of prif_coarray_handle and an
offset in bytes from the start of the coarray data (as shown in
Figure 4), whereas indirect access variants represent the target
memory location using its address in the virtual memory space
of the target process. This design enables implementations to
reap the benefits of symmetric heap management for RMA
involving symmetric coarray objects, while preserving the
semantically required capability of RMA on non-symmetric
objects.

C. Teams

The use of Fortran teams, and specifically the CHANGE
TEAM construct, implicitly modifies the semantics of various
parallel features. For example, collective operations such as
CO_SUM are only performed over members of the current
team. Additionally, synchronization and allocation of coar-
rays only occur with members of the current team. Several
other parallel features accept a team number or TEAM_TYPE
variable as an argument, but use the current team by default
when one is not provided. While this doesn’t significantly
impact the design of PRIF, it is worth noting for potential
implementations.

The PRIF implementation is responsible for constructing
teams (via prif_form_team), answering team state queries
(prif_get_team, prif_team_number) and tracking the
current team, which is updated in a stack-like discipline using
prif_change_team and prif_end_team.

D. Clean-up operations at coarray deallocation

For coarrays of derived type, coarray deallocation in general
requires execution of compiler-generated code for some clean-
up actions. One example of such actions is running user-
provided final subroutines when the coarray contains objects
of a finalizable derived type. Another example is when a
coarray of derived type contains allocatable components,
any referenced objects need to be transitively deallocated.
The PRIF implementation has no knowledge of derived types
defined by the user at the Fortran language level, so the
compiler must assume responsibility for generating code to
perform these cleanup actions upon deallocation.

Coarray deallocation can occur either explicitly (e.g.,
via a DEALLOCATE statement or a local variable scope
exit, both of which are translated into a call to prif_
deallocate_coarray) or implicitly (e.g., via an END
TEAM statement closing a CHANGE TEAM construct that al-
located one or more coarrays). PRIF unifies both use cases
under one mechanism; the prif_allocate_coarray call
includes a final_func argument, which accepts an optional
function pointer to a cleanup callback that will be invoked
by PRIF immediately before coarray deallocation. For any
coarray allocation that potentially requires cleanup actions,
the compiler is expected to generate a cleanup function that

accepts the prif_coarray_handle and implements ap-
propriate finalization actions.

E. Reassociation of Coarrays

Fortran’s CHANGE TEAM construct includes an optional
coarray association list, which enables the programmer to
re-associate existing coarrays with a new name (and op-
tionally altered corank and cobounds) for the duration of
the CHANGE TEAM construct. Similar re-association can also
be performed when calling procedures that accept a coarray
dummy argument. PRIF specifies the prif_alias_create
and prif_alias_destroy procedures that enable this
functionality. prif_alias_create creates a new coarray
descriptor, with possibly altered corank and cobounds, that
aliases the same (unmodified) coarray element data.

F. Allocatable Coarray Tracking and Move Alloc

Fortran allows declaration of an allocatable coarray
variable, which represents a coarray that can be allocated
and deallocated dynamically (and collectively) during program
execution. Once allocated, such coarrays behave similarly to
any other, and in particular can be passed down to called
procedures via a coarray dummy argument (which may or may
not include an allocatable attribute). The ALLOCATED
intrinsic inquiry function allows the programmer to query
whether any given allocatable variable is currently al-
located. The MOVE_ALLOC intrinsic subroutine enables the
Fortran programmer to effectively transfer ownership of an
unmodified target object from one allocatable variable
to another.

The combination of these features presents some potential
challenges to implementers of parallel Fortran. For example,
a procedure that receives an allocatable coarray as an
intent(inout) dummy argument is in general permitted
to allocate or deallocate that coarray. Upon return from the
callee procedure, the corresponding allocatable variable
in the caller’s scope must reflect such operations; for example,
subsequent calls to the ALLOCATED query must reflect any
change in state. Similarly, such procedures are also in general
permitted to call MOVE_ALLOC to transfer ownership of a
coarray object from one allocatable coarray variable
to another, again potentially impacting outer scopes in the
call chain. One consequence of these semantics is that upon
coarray deallocation, the compiler may be required to update
the allocation state of allocatable variables that currently
own the target object, and the identity of such allocatable
variables may be non-local and statically unknowable.

PRIF is designed to avoid compiler-specific assumptions
about object representations, and in particular never directly
manipulates allocatable variables (as that would require
detailed knowledge of the compiler-specific internal represen-
tations used to support the allocatable attribute). One
direct consequence of this design is that PRIF does not include
a MOVE_ALLOC operation; it is the compiler’s responsibility
to implement MOVE_ALLOC via a combination of appropriate
manipulation of allocatable variable representation and

7

Bonachea, Rasmussen, Richardson, Rouson: Parallel Runtime Interface for Fortran (PRIF)

1 module subroutine prif_co_reduce(&
2 a, operation, result_image, stat, errmsg, errmsg_alloc)
3 implicit none
4 type(*), intent(inout), contiguous, target :: a(..)
5 type(c_funptr), value :: operation
6 integer(c_int), intent(in), optional :: result_image
7 integer(c_int), intent(out), optional :: stat
8 character(len=*), intent(inout), optional :: errmsg
9 character(len=:), intent(inout), allocatable, optional :: errmsg_alloc

10 end subroutine

Fig. 5. The interface for prif_co_reduce

calls to PRIF procedures. For example, according to the
Fortran standard, MOVE_ALLOC with coarray arguments is an
image control statement that requires synchronization, thus the
compiler should likely insert calls to prif_sync_all as
part of the implementation.

As explained in §III-D, PRIF enlists a compiler-generated
code callback at coarray deallocation time to perform any
necessary cleanup actions. One important responsibility of
such a cleanup callback is to update the allocation state of any
allocatable variables referencing the coarray being deal-
located. Because the identity of such variables cannot be stati-
cally known in general, particularly for implicit deallocation at
END TEAM, the compiler needs the ability to maintain some
dynamic information associated with any allocatable
coarray, and later retrieve that information (e.g., inside the
cleanup callback) to perform appropriate actions. PRIF en-
ables this capability using the prif_set_context_data
and prif_get_context_data subroutines, which respec-
tively store and retrieve a pointer to compiler-owned metadata
that is associated with the coarray object. This metadata
pointer is also shared between any aliased coarray descrip-
tors created using coarray re-association (§III-E), because all
aliases share the same underlying target object and allocation
status.

G. Collective Subroutines

The interfaces to the collective subroutines are not particu-
larly complicated, but some requirements on CO_BROADCAST
and CO_REDUCE have implications for both PRIF clients and
implementers.
CO_BROADCAST is required to operate on derived types,

including those with allocatable or polymorphic com-
ponents. Implementing this directly in a runtime would re-
quire knowledge of the internal representation of object de-
scriptors for a given compiler. To avoid that dependency,
prif_co_broadcast instead specifies it is the compiler’s
responsibility to generate code that performs any necessary
communication through additional calls to PRIF procedures,
for example to arrange for each image to execute the neces-
sary allocations of the components and broadcast their data
separately.

CO_REDUCE is also required to operate on derived types,
and it additionally accepts a user-provided function for the
reduction operation. It is the compiler’s job to enforce that the
provided function matches the type of the data argument. The
data argument is prohibited from having allocatable or
pointer components, but the arguments are not guaranteed
to be C-interoperable and could have length type parameters,
which could complicate matters for certain compilers. In par-
ticular, a compiler’s representation of the type(*) argument
to prif_co_reduce (see Figure 5), may not match the
representation expected by a user-provided operation function
for the type of the actual argument if it is passed directly as
the operation argument. We are still exploring whether this
detail (which is specific to CO_REDUCE) can be transparently
accommodated by PRIF implementations, or whether it will
need to be explicitly addressed by compilers when calling
prif_co_reduce.

GASNet-EX

System Runtime & Memory Technologies

Caffeine

Compiled Application
- - - - PRIF - - - -

Fig. 6. Caffeine software stack

IV. CAFFEINE AND FUTURE WORK

A. Caffeine Implementation Status

As mentioned earlier, a prototype implementation of a
runtime conforming to the PRIF Specification is in-progress.
Figure 6 illustrates the Caffeine system software stack, where

8

Bonachea, Rasmussen, Richardson, Rouson: Parallel Runtime Interface for Fortran (PRIF)

TABLE 3
STATUS OF CAFFEINE’S SUPPORT FOR THE PARALLEL FEATURES OF FORTRAN

Feature Status
Program launch yes
Normal termination: STOP and END PROGRAM statements yes
Error termination: ERROR STOP statement yes
Collective subroutines: CO_{BROADCAST,SUM,MIN,MAX,REDUCE} yes
Image enumeration: THIS_IMAGE, NUM_IMAGES, IMAGE_INDEX intrinsic functions partial
Synchronization: SYNC {ALL,IMAGES,MEMORY,TEAM} statements partial
Coarrays: declaration, access, (de)allocation, inquiry functions partial
Teams: TEAM_TYPE intrinsic type and {FORM,CHANGE,END} TEAM statements partial
Critical construct: CRITICAL and END CRITICAL no
Atomics: ATOMIC_{INT,LOGICAL}_KIND kind parameters and ATOMIC_{DEFINE,REF,...} subroutines no
Locks: LOCK and UNLOCK constructs no
Events: EVENT_TYPE intrinsic type, EVENT_QUERY subroutine and EVENT {POST,WAIT} statements no
Notifications: NOTIFY_TYPE intrinsic type and NOTIFY WAIT statements no
Failed/stopped images: FAIL IMAGE statement, {FAILED,STOPPED}_IMAGES intrinsic functions, related constants no

the Caffeine library implements PRIF using the GASNet-
EX library for network-level communication services. Table 3
reports on the current implementation status of various PRIF
features in Caffeine at the time of writing. We believe the
progress so far is already sufficient to enable support for
a significant number of real parallel Fortran applications.
We intend to continue work on Caffeine to enable complete
support for the parallel Fortran feature set.

B. Future Work

At present all communication operations in PRIF are seman-
tically blocking on at least source completion. We acknowl-
edge that this may inhibit certain types of static optimizations,
namely the explicit overlap of communication with unrelated
computation or other communication. In the future we intend
to develop split-phased/asynchronous versions of various PRIF
communication operations to enable more opportunities for
static optimization of communication.

At present PRIF does not expose a capability for an image
to directly access shared objects associated with another image
(i.e., via simple load/store instructions). We acknowledge that
in some cases an image may be co-located in the same physical
memory domain with the image whose coarray data it needs
to access, but we don’t currently expose this capability to
PRIF clients. In the future we intend to expose shared-memory
bypass for coarray access to PRIF clients.

V. CONCLUSIONS

While Fortran has been supporting scientific applications for
many decades, the introduction of multi-image SPMD/PGAS
parallelism in Fortran 2008 enriched the functionality available
to its users through features defined in the language itself. The
Parallel Fortran feature set greatly expanded in subsequent
specification revisions, and a fully Fortran 2023 compliant
compiler must support all of these features. While LLVM
Flang has made great progress in the Fortran features that it
supports for compilation, it remains a goal to add support for
Parallel Fortran features to the compiler. We have shown our
work towards achieving that goal which includes developing
PRIF, a new, standardized interface that is both compiler and

runtime library agnostic to reduce the burden on compiler
teams when adding support for Parallel Fortran.

PRIF is an interface written in Fortran, which provides
significant benefits, such as type-agnostic and type-erased
arguments allowing a runtime implementation to be portable
across compilers. We detailed the structure of the PRIF
Specification and presented an overview of the contents it
mandates for the prif module, which includes derived types,
named constants, and procedure interfaces. Throughout the
development of PRIF, we encountered a variety of complex,
technical considerations required by the design of multi-image
parallelism in Fortran. We have described the most critical of
these considerations and the ways in which PRIF addresses
the design of the language. Additionally, we provided an intro-
duction to Caffeine, a PRIF implementation, which currently
supports a partial but significant and frequently used set of
Parallel Fortran features and expressed our plans for future
work in PRIF and in Caffeine.

ACKNOWLEDGMENTS

Selected portions of this paper are reproduced with permis-
sion from [12, 29].

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research.

This research was supported in part by the Exascale Com-
puting Project (17-SC-20-SC), a collaborative effort of the
U.S. Department of Energy Office of Science and the National
Nuclear Security Administration.

This research used resources of the National Energy Re-
search Scientific Computing Center (NERSC), a U.S. De-
partment of Energy Office of Science User Facility located
at Lawrence Berkeley National Laboratory, operated under
Contract No. DE-AC02-05CH11231.

9

Bonachea, Rasmussen, Richardson, Rouson: Parallel Runtime Interface for Fortran (PRIF)

ACRONYMS

HPC High-Performance Computing

PGAS Partitioned Global Address Space

RMA Remote Memory Access

SPMD Single-Program, Multiple-Data

PRIF Parallel Runtime Interface for Fortran

REFERENCES

[1] W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill
et al., “A description of the advanced research WRF
model version 4,” National Center for Atmospheric Re-
search: Boulder, CO, USA, vol. 145, p. 145, 2019, doi:
10.5065/1dfh-6p97.

[2] G. Danabasoglu, J.-F. Lamarque, J. Bacmeister, D. Bai-
ley, A. DuVivier, J. Edwards, L. Emmons et al., “The
community earth system model version 2 (CESM2),”
Journal of Advances in Modeling Earth Systems, vol. 12,
no. 2, 2020, doi:10.1029/2019MS001916.

[3] M. Ding, X. Zhou, H. Zhang, H. Bian, and Q. Yan, “A
review of the development of nuclear fuel performance
analysis and codes for PWRs,” Annals of Nuclear Energy,
vol. 163, p. 108542, 2021, doi:10.1016/j.anucene.2021.
108542.

[4] R. T. Biedron, J.-R. Carlson, J. M. Derlaga, P. A. Gnoffo,
D. P. Hammond, W. T. Jones, B. Kleb, E. M. Lee-
Rausch, E. J. Nielsen, M. A. Park et al., “FUN3D
Manual: 13.2,” NASA TM, vol. 219661, 2017, https:
//fun3d.larc.nasa.gov/papers/FUN3D Manual-13.2.pdf.

[5] K. B. McGrattan, R. J. McDermott, C. G. Weinschenk,
and G. P. Forney, “Fire dynamics simulator user’s guide,”
NIST special publication, vol. 1019, 2013, doi:10.6028/
NIST.sp.1019.

[6] J. Ott, M. Pritchard, N. Best, E. Linstead, M. Curcic,
and P. Baldi, “A fortran-keras deep learning bridge for
scientific computing,” Scientific Programming, vol. 2020,
no. 1, 2020, doi:10.1155/2020/8888811.

[7] Inference-Engine, https://go.lbl.gov/inference-engine.
[8] Fortran Package Manager, https://fpm.fortran-lang.org.
[9] B. Austin et al., NERSC-10 Workload Analysis, 2020,

doi:10.25344/S4N30W.
[10] Fortran Standards Committee JTC1/SC22/WG5, Infor-

mation technology — Programming languages — For-
tran, ISO/IEC 1539-1:2010. International Organization
for Standardization (ISO), Oct 2010, https://www.iso.org/
standard/50459.html.

[11] Fortran Standards Committee JTC1/SC22/WG5, In-
formation technology — Programming languages —
ISO/IEC 1539-1:2023. International Organization for
Standardization (ISO), Nov 2023, https://www.iso.org/
standard/82170.html.

[12] D. Rouson and D. Bonachea, “Caffeine: CoArray Fortran
Framework of Efficient Interfaces to Network Environ-
ments,” in Proceedings of the Eighth Annual Workshop
on the LLVM Compiler Infrastructure in HPC (LLVM-
HPC2022), November 2022, doi:10.25344/S4459B.

[13] K. Rasmussen, D. Rouson, N. George, D. Bonachea,
H. Kadhem, and B. Friesen, “Agile Acceleration of
LLVM Flang Support for Fortran 2018 Parallel Pro-
gramming,” in Research Poster at the International Con-
ference for High Performance Computing, Networking,
Storage, and Analysis (SC22), Nov 2022, doi:10.25344/
S4CP4S.

[14] A. Fanfarillo, T. Burnus, V. Cardellini, S. Filippone,
D. Nagle, and D. Rouson, “OpenCoarrays: Open-source
Transport Layers Supporting Coarray Fortran Compil-
ers,” in Partitioned Global Address Space Programming
Models (PGAS), 2014, doi:10.1145/2676870.2676876.

[15] Berkeley UPC Runtime Library, Lawrence Berkeley Na-
tional Laboratory, https://upc.lbl.gov/docs/system/index.
shtml.

[16] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick,
E. Brooks, and K. Warren, “Introduction to UPC and
language specification,” Technical Report CCS-TR-99-
157, IDA Center for Computing Sciences, Tech. Rep.,
1999.

[17] UPC Consortium, “UPC Language and Library Spec-
ifications, v1.3,” Lawrence Berkeley National Labora-
tory, Tech. Rep. LBNL-6623E, Nov. 2013, doi:10.2172/
1134233.

[18] R. W. Numrich and J. Reid, “Co-Array Fortran for
parallel programming,” in ACM Sigplan Fortran Forum,
vol. 17, no. 2, 1998, pp. 1–31, doi:10.1145/289918.
289920.

[19] D. Bonachea and P. H. Hargrove, “GASNet specifica-
tion, v1.8.1,” Lawrence Berkeley National Laboratory,
Tech. Rep. LBNL-2001064, August 2017, doi:10.2172/
1398512.

[20] W. Chen, D. Bonachea, J. Duell, P. Husband, C. Iancu,
and K. Yelick, “A Performance Analysis of the
Berkeley UPC Compiler,” in Proceedings of the 17th
International Conference on Supercomputing (ICS), June
2003, doi:10.1145/782814.782825. [Online]. Available:
https://escholarship.org/uc/item/91v1j2jw

[21] GNU Unified Parallel C (GCC/UPC) Compiler, Intrepid
Technology, Inc., https://github.com/Intrepid/GUPC.

[22] Clang UPC Compiler, https://clangupc.github.io/
clang-upc/.

[23] Clang UPC2C Translator, https://clangupc.github.io/
clang-upc2c/.

[24] Berkeley UPC Runtime Downloads, Lawrence Berkeley
National Laboratory, https://upc.lbl.gov/download/.

[25] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, The
Java virtual machine specification. Addison-wesley,
2013.

10

https://doi.org/10.5065/1dfh-6p97
https://doi.org/10.5065/1dfh-6p97
https://doi.org/10.1029/2019MS001916
https://doi.org/10.1016/j.anucene.2021.108542
https://doi.org/10.1016/j.anucene.2021.108542
https://fun3d.larc.nasa.gov/papers/FUN3D_Manual-13.2.pdf
https://fun3d.larc.nasa.gov/papers/FUN3D_Manual-13.2.pdf
https://doi.org/10.6028/NIST.sp.1019
https://doi.org/10.6028/NIST.sp.1019
https://doi.org/10.1155/2020/8888811
https://go.lbl.gov/inference-engine
https://fpm.fortran-lang.org
https://doi.org/10.25344/S4N30W
https://www.iso.org/standard/50459.html
https://www.iso.org/standard/50459.html
https://www.iso.org/standard/82170.html
https://www.iso.org/standard/82170.html
https://doi.org/10.25344/S4459B
https://doi.org/10.25344/S4CP4S
https://doi.org/10.25344/S4CP4S
https://doi.org/10.1145/2676870.2676876
https://upc.lbl.gov/docs/system/index.shtml
https://upc.lbl.gov/docs/system/index.shtml
https://doi.org/10.2172/1134233
https://doi.org/10.2172/1134233
https://doi.org/10.1145/289918.289920
https://doi.org/10.1145/289918.289920
https://doi.org/10.2172/1398512
https://doi.org/10.2172/1398512
https://doi.org/10.1145/782814.782825
https://escholarship.org/uc/item/91v1j2jw
https://github.com/Intrepid/GUPC
https://clangupc.github.io/clang-upc/
https://clangupc.github.io/clang-upc/
https://clangupc.github.io/clang-upc2c/
https://clangupc.github.io/clang-upc2c/
https://upc.lbl.gov/download/

Bonachea, Rasmussen, Richardson, Rouson: Parallel Runtime Interface for Fortran (PRIF)

[26] D. Chisnall, “How to Design an ISA: The popularity of
RISC-V has led many to try designing instruction sets,”
Queue, vol. 21, no. 6, pp. 27–46, 2023, doi:10.1145/
3639445.

[27] Fortran Standards Committee JTC1/SC22/WG5, Infor-
mation technology — Programming languages — For-
tran, ISO/IEC 1539-1:2018. International Organization
for Standardization (ISO), Nov 2018, https://www.iso.
org/standard/72320.html.

[28] Caffeine: CoArray Fortran Framework of Efficient In-
terfaces to Network Environments, https://go.lbl.gov/
caffeine.

[29] D. Bonachea, K. Rasmussen, B. Richardson, and D. Rou-
son, “Parallel Runtime Interface for Fortran (PRIF) Spec-
ification, Revision 0.4,” Lawrence Berkeley National
Laboratory, Tech. Rep. LBNL-2001604, July 2024, doi:
10.25344/S4WG64.

[30] D. Bonachea and P. H. Hargrove, “GASNet-EX: A High-
Performance, Portable Communication Library for Exas-
cale,” in Proceedings of Languages and Compilers for
Parallel Computing (LCPC’18), ser. LNCS, vol. 11882.
Springer, October 2018, doi:10.25344/S4QP4W.

11

https://doi.org/10.1145/3639445
https://doi.org/10.1145/3639445
https://www.iso.org/standard/72320.html
https://www.iso.org/standard/72320.html
https://go.lbl.gov/caffeine
https://go.lbl.gov/caffeine
https://doi.org/10.25344/S4WG64
https://doi.org/10.25344/S4WG64
https://doi.org/10.25344/S4QP4W

	I Introduction
	I-A Parallel Fortran
	I-B Motivation and Objectives
	I-C Organization

	II The Interface
	II-A The Specification
	II-B The Compiler
	II-C The prif Module
	II-D ISO_Fortran_Env Types and Named Constants
	II-E PRIF-specific types
	II-F PRIF-specific Named Constants
	II-G PRIF Procedures
	II-G1 prif_allocate_coarray
	II-G2 prif_put

	III Technical Considerations for the PRIF Design
	III-A Communication library
	III-B Symmetric and Non-symmetric Shared Objects
	III-C Teams
	III-D Clean-up operations at coarray deallocation
	III-E Reassociation of Coarrays
	III-F Allocatable Coarray Tracking and Move Alloc
	III-G Collective Subroutines

	IV Caffeine and Future Work
	IV-A Caffeine Implementation Status
	IV-B Future Work

	V Conclusions
	Acknowledgments
	References

