Skip to content

alibaba-yuanjing-aigclab/ViViD

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ViViD

ViViD: Video Virtual Try-on using Diffusion Models

arXiv Project Page Hugging Face Spaces

Dataset

Dataset released: ViViD

Installation

git clone https://github.com/alibaba-yuanjing-aigclab/ViViD
cd ViViD

Environment

conda create -n vivid python=3.10
conda activate vivid
pip install -r requirements.txt  

Weights

You can place the weights anywhere you like, for example, ./ckpts. If you put them somewhere else, you just need to update the path in ./configs/prompts/*.yaml.

Stable Diffusion Image Variations

cd ckpts

git lfs install
git clone https://huggingface.co/lambdalabs/sd-image-variations-diffusers

SD-VAE-ft-mse

git lfs install
git clone https://huggingface.co/stabilityai/sd-vae-ft-mse

Motion Module

Download mm_sd_v15_v2

ViViD

git lfs install
git clone https://huggingface.co/alibaba-yuanjing-aigclab/ViViD

Inference

We provide two demos in ./configs/prompts/, run the following commands to have a try😼.

python vivid.py --config ./configs/prompts/upper1.yaml

python vivid.py --config ./configs/prompts/lower1.yaml

Data

As illustrated in ./data, the following data should be provided.

./data/
|-- agnostic
|   |-- video1.mp4
|   |-- video2.mp4
|   ...
|-- agnostic_mask
|   |-- video1.mp4
|   |-- video2.mp4
|   ...
|-- cloth
|   |-- cloth1.jpg
|   |-- cloth2.jpg
|   ...
|-- cloth_mask
|   |-- cloth1.jpg
|   |-- cloth2.jpg
|   ...
|-- densepose
|   |-- video1.mp4
|   |-- video2.mp4
|   ...
|-- videos
|   |-- video1.mp4
|   |-- video2.mp4
|   ...

Agnostic and agnostic_mask video

This part is a bit complex, you can obtain them through any of the following three ways:

  1. Follow OOTDiffusion to extract them frame-by-frame.(recommended)
  2. Use SAM + Gaussian Blur.(see ./tools/sam_agnostic.py for an example)
  3. Mask editor tools.

Note that the shape and size of the agnostic area may affect the try-on results.

Densepose video

See vid2densepose.(Thanks)

Cloth mask

Any detection tool is ok for obtaining the mask, like SAM.

BibTeX

@misc{fang2024vivid,
        title={ViViD: Video Virtual Try-on using Diffusion Models}, 
        author={Zixun Fang and Wei Zhai and Aimin Su and Hongliang Song and Kai Zhu and Mao Wang and Yu Chen and Zhiheng Liu and Yang Cao and Zheng-Jun Zha},
        year={2024},
        eprint={2405.11794},
        archivePrefix={arXiv},
        primaryClass={cs.CV}
  }

Contact Us

Zixun Fang: [email protected]
Yu Chen: [email protected]