diff --git a/docs/source/automated_dr_learner.ipynb b/docs/source/automated_dr_learner.ipynb
new file mode 100644
index 00000000..4c68e400
--- /dev/null
+++ b/docs/source/automated_dr_learner.ipynb
@@ -0,0 +1,809 @@
+{
+ "cells": [
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Automated doubly robust estimation with ChiRho"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Setup"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Here, we install the necessary Pytorch, Pyro, and ChiRho dependencies for this example."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from typing import Callable, Optional, Tuple\n",
+ "\n",
+ "import functools\n",
+ "import torch\n",
+ "import math\n",
+ "import seaborn as sns\n",
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "import pyro\n",
+ "import pyro.distributions as dist\n",
+ "\n",
+ "from chirho.counterfactual.handlers import MultiWorldCounterfactual\n",
+ "from chirho.indexed.ops import IndexSet, gather\n",
+ "from chirho.interventional.handlers import do\n",
+ "from chirho.observational.handlers.condition import condition\n",
+ "from chirho.observational.handlers.predictive import PredictiveModel\n",
+ "from chirho.robust.handlers.estimators import MonteCarloInfluenceEstimator, one_step_corrected_estimator \n",
+ "\n",
+ "if not pyro.settings.get(\"module_local_params\"):\n",
+ " pyro.settings.set(module_local_params=True)\n",
+ "\n",
+ "sns.set_style(\"white\")\n",
+ "\n",
+ "pyro.set_rng_seed(321) # for reproducibility"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Overview: automated robust estimation pipeline\n",
+ "\n",
+ "In this tutorial, we will use ChiRho to estimate the average treatment effect (ATE) from observational data. We will use a simple example to illustrate the basic concepts of doubly robust estimation and how ChiRho can be used to automate the process for more general summaries of interest. \n",
+ "\n",
+ "There are five main steps to our doubly robust estimation procedure but only the last step is different from a standard probabilistic programming workflow:\n",
+ "1. Write model of interest\n",
+ " - Define probabilistic model of interest using Pyro\n",
+ "2. Feed in data\n",
+ " - Observed data used to train the model\n",
+ "3. Run inference\n",
+ " - Use Pyro's rich inference library to fit the model to the data\n",
+ "4. Define target functional\n",
+ " - This is the model summary of interest (e.g. average treatment effect)\n",
+ "5. Compute robust estimate\n",
+ " - Use ChiRho to compute the doubly robust estimate of the target functional\n",
+ " - Importantly, this step is automated and does not require refitting the model for each new functional\n",
+ "\n",
+ "\n",
+ "Our proposed automated robust inference pipeline is summarized in the figure below.\n",
+ "\n",
+ "![fig1](figures/robust_pipeline.png)"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Causal Probabilistic Program\n",
+ "\n",
+ "### Model Description\n",
+ "In this example, we will focus on a cannonical model `CausalGLM` consisting of three types of variables: binary treatment (`A`), confounders (`X`), and response (`Y`). For simplicitly, we assume that the response is generated from a generalized linear model with link function $g$. The model is described by the following generative process:\n",
+ "\n",
+ "$$\n",
+ "\\begin{align*}\n",
+ "X &\\sim \\text{Normal}(0, I_p) \\\\\n",
+ "A &\\sim \\text{Bernoulli}(\\pi(X)) \\\\\n",
+ "\\mu &= \\beta_0 + \\beta_1^T X + \\tau A \\\\\n",
+ "Y &\\sim \\text{ExponentialFamily}(\\text{mean} = g^{-1}(\\mu))\n",
+ "\\end{align*}\n",
+ "$$\n",
+ "\n",
+ "where $p$ denotes the number of confounders, $\\pi(X)$ is the probability of treatment conditional on confounders $X$, $\\beta_0$ is the intercept, $\\beta_1$ is the confounder effect, and $\\tau$ is the treatment effect."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class CausalGLM(pyro.nn.PyroModule):\n",
+ " def __init__(\n",
+ " self,\n",
+ " p: int,\n",
+ " link_fn: Callable[..., dist.Distribution] = lambda mu: dist.Normal(mu, 1.0),\n",
+ " prior_scale: Optional[float] = None,\n",
+ " ):\n",
+ " super().__init__()\n",
+ " self.p = p\n",
+ " self.link_fn = link_fn\n",
+ " if prior_scale is None:\n",
+ " self.prior_scale = 1 / math.sqrt(self.p)\n",
+ " else:\n",
+ " self.prior_scale = prior_scale\n",
+ "\n",
+ " @pyro.nn.PyroSample\n",
+ " def outcome_weights(self):\n",
+ " return dist.Normal(0.0, self.prior_scale).expand((self.p,)).to_event(1)\n",
+ "\n",
+ " @pyro.nn.PyroSample\n",
+ " def intercept(self):\n",
+ " return dist.Normal(0.0, 1.0)\n",
+ "\n",
+ " @pyro.nn.PyroSample\n",
+ " def propensity_weights(self):\n",
+ " return dist.Normal(0.0, self.prior_scale).expand((self.p,)).to_event(1)\n",
+ "\n",
+ " @pyro.nn.PyroSample\n",
+ " def treatment_weight(self):\n",
+ " return dist.Normal(0.0, 1.0)\n",
+ "\n",
+ " @property\n",
+ " def covariate_loc(self):\n",
+ " return torch.zeros(self.p)\n",
+ " \n",
+ " @property\n",
+ " def covariate_scale(self):\n",
+ " return torch.ones(self.p)\n",
+ "\n",
+ " def forward(self):\n",
+ " X = pyro.sample(\"X\", dist.Normal(self.covariate_loc, self.covariate_scale).to_event(1))\n",
+ " A = pyro.sample(\n",
+ " \"A\",\n",
+ " dist.Bernoulli(\n",
+ " logits=torch.einsum(\"...i,...i->...\", X, self.propensity_weights)\n",
+ " ),\n",
+ " )\n",
+ "\n",
+ " return pyro.sample(\n",
+ " \"Y\",\n",
+ " self.link_fn(\n",
+ " torch.einsum(\"...i,...i->...\", X, self.outcome_weights) + A * self.treatment_weight + self.intercept\n",
+ " ),\n",
+ " )"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Next, we will condition on both treatment and confounders to estimate the causal effect of treatment on the outcome. We will use the following causal probabilistic program to do so:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class ConditionedModel(CausalGLM):\n",
+ "\n",
+ " def forward(self, *, X: torch.Tensor, A: torch.Tensor, Y: torch.Tensor):\n",
+ " with condition(data={\"X\": X, \"A\": A, \"Y\": Y}):\n",
+ " self.intercept, self.outcome_weights, self.propensity_weights, self.treatment_weight\n",
+ " with pyro.plate(\"__train__\", size=X.shape[0], dim=-1):\n",
+ " return super().forward()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/svg+xml": [
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Visualize the model\n",
+ "pyro.render_model(\n",
+ " lambda: ConditionedModel(p=1)(X=torch.zeros(1, 1), A=torch.zeros(1), Y=torch.zeros(1)),\n",
+ " render_params=True, \n",
+ " render_distributions=True\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Generating data\n",
+ "\n",
+ "For evaluation, we generate `N_datasets` datasets, each with `N` samples. We compare vanilla estimates of the target functional with the double robust estimates of the target functional across the `N_sims` datasets. We use a similar data generating process as in Kennedy (2022)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class GroundTruthModel(CausalGLM):\n",
+ " def __init__(\n",
+ " self,\n",
+ " p: int,\n",
+ " alpha: int,\n",
+ " beta: int,\n",
+ " link_fn: Callable[..., dist.Distribution] = lambda mu: dist.Normal(mu, 1.0),\n",
+ " ):\n",
+ " super().__init__(p, link_fn)\n",
+ " self.alpha = alpha # sparsity of propensity weights\n",
+ " self.beta = beta # sparsity of outcome weights\n",
+ "\n",
+ " @property\n",
+ " def outcome_weights(self):\n",
+ " outcome_weights = 1 / math.sqrt(self.beta) * torch.ones(self.p)\n",
+ " outcome_weights[self.beta :] = 0.0\n",
+ " return outcome_weights\n",
+ "\n",
+ " @property\n",
+ " def propensity_weights(self):\n",
+ " propensity_weights = 1 / math.sqrt(self.alpha) * torch.ones(self.p)\n",
+ " propensity_weights[self.alpha :] = 0.0\n",
+ " return propensity_weights\n",
+ "\n",
+ " @property\n",
+ " def treatment_weight(self):\n",
+ " return torch.tensor(0.)\n",
+ "\n",
+ " @property\n",
+ " def intercept(self):\n",
+ " return torch.tensor(0.0)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "N_datasets = 100\n",
+ "simulated_datasets = []\n",
+ "\n",
+ "# Data configuration\n",
+ "p = 200\n",
+ "alpha = 50\n",
+ "beta = 50\n",
+ "N_train = 500\n",
+ "N_test = 500\n",
+ "\n",
+ "true_model = GroundTruthModel(p, alpha, beta)\n",
+ "\n",
+ "for _ in range(N_datasets):\n",
+ " # Generate data\n",
+ " D_train = pyro.infer.Predictive(\n",
+ " true_model, num_samples=N_train, return_sites=[\"X\", \"A\", \"Y\"], parallel=True\n",
+ " )()\n",
+ " D_test = pyro.infer.Predictive(\n",
+ " true_model, num_samples=N_test, return_sites=[\"X\", \"A\", \"Y\"], parallel=True\n",
+ " )()\n",
+ " simulated_datasets.append((D_train, D_test))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Fit parameters via maximum likelihood"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "trained_guides = []\n",
+ "for i in range(N_datasets):\n",
+ " # Generate data\n",
+ " D_train = simulated_datasets[i][0]\n",
+ "\n",
+ " # Fit model using maximum likelihood\n",
+ " conditioned_model = ConditionedModel(p=D_train[\"X\"].shape[1])\n",
+ " \n",
+ " guide_train = pyro.infer.autoguide.AutoDelta(conditioned_model)\n",
+ " elbo = pyro.infer.Trace_ELBO()(conditioned_model, guide_train)\n",
+ "\n",
+ " # initialize parameters\n",
+ " elbo(X=D_train[\"X\"], A=D_train[\"A\"], Y=D_train[\"Y\"])\n",
+ " adam = torch.optim.Adam(elbo.parameters(), lr=0.03)\n",
+ "\n",
+ " # Do gradient steps\n",
+ " for _ in range(2000):\n",
+ " adam.zero_grad()\n",
+ " loss = elbo(X=D_train[\"X\"], A=D_train[\"A\"], Y=D_train[\"Y\"])\n",
+ " loss.backward()\n",
+ " adam.step()\n",
+ "\n",
+ " trained_guides.append(guide_train)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Causal Query: Average treatment effect (ATE)\n",
+ "\n",
+ "The average treatment effect summarizes, on average, how much the treatment changes the response, $ATE = \\mathbb{E}[Y|do(A=1)] - \\mathbb{E}[Y|do(A=0)]$. The `do` notation indicates that the expectations are taken according to *intervened* versions of the model, with $A$ set to a particular value. Note from our [tutorial](tutorial_i.ipynb) that this is different from conditioning on $A$ in the original `causal_model`, which assumes $X$ and $T$ are dependent.\n",
+ "\n",
+ "\n",
+ "To implement this query in ChiRho, we define the `ATEFunctional` class which take in a `model` and `guide` and returns the average treatment effect by simulating from the posterior predictive distribution of the model and guide."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Defining the target functional"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class ATEFunctional(torch.nn.Module):\n",
+ " def __init__(self, model: Callable, *, num_monte_carlo: int = 100):\n",
+ " super().__init__()\n",
+ " self.model = model\n",
+ " self.num_monte_carlo = num_monte_carlo\n",
+ " \n",
+ " def forward(self, *args, **kwargs):\n",
+ " with MultiWorldCounterfactual():\n",
+ " with pyro.plate(\"monte_carlo_functional\", size=self.num_monte_carlo, dim=-2):\n",
+ " with do(actions=dict(A=(torch.tensor(0.0), torch.tensor(1.0)))):\n",
+ " Ys = self.model(*args, **kwargs)\n",
+ " Y0 = gather(Ys, IndexSet(A={1}), event_dim=0)\n",
+ " Y1 = gather(Ys, IndexSet(A={2}), event_dim=0)\n",
+ " ate = (Y1 - Y0).mean(dim=-2, keepdim=True).mean(dim=-1, keepdim=True).squeeze()\n",
+ " return pyro.deterministic(\"ATE\", ate)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Closed form doubly robust correction\n",
+ "\n",
+ "For the average treatment effect functional, there exists a closed-form analytical formula for the doubly robust correction. This formula is derived in Kennedy (2022) and is implemented below:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Closed form expression\n",
+ "def closed_form_doubly_robust_ate_correction(X_test, theta) -> Tuple[torch.Tensor, torch.Tensor]:\n",
+ " X = X_test[\"X\"]\n",
+ " A = X_test[\"A\"]\n",
+ " Y = X_test[\"Y\"]\n",
+ " pi_X = torch.sigmoid(X.mv(theta[\"propensity_weights\"]))\n",
+ " mu_X = (\n",
+ " X.mv(theta[\"outcome_weights\"])\n",
+ " + A * theta[\"treatment_weight\"]\n",
+ " + theta[\"intercept\"]\n",
+ " )\n",
+ " analytic_eif_at_test_pts = (A / pi_X - (1 - A) / (1 - pi_X)) * (Y - mu_X)\n",
+ " analytic_correction = analytic_eif_at_test_pts.mean()\n",
+ " return analytic_correction, analytic_eif_at_test_pts"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Computing automated doubly robust correction via Monte Carlo\n",
+ "\n",
+ "While the doubly robust correction term is known in closed-form for the average treatment effect functional, our `one_step_correction` function in `ChiRho` works for a wide class of other functionals. We focus on the average treatment effect functional here so that we have a ground truth to compare `one_step_correction` against."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/home/eli/development/chirho/chirho/robust/handlers/estimators.py:72: UserWarning: Calling influence_fn with torch.grad enabled can lead to memory leaks. Please use torch.no_grad() to avoid this issue. See example in the docstring.\n",
+ " warnings.warn(\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Compute doubly robust ATE estimates using both the automated and closed form expressions\n",
+ "plug_in_ates = []\n",
+ "analytic_corrections = []\n",
+ "automated_monte_carlo_corrections = []\n",
+ "for i in range(N_datasets):\n",
+ " trained_guide = trained_guides[i]\n",
+ " D_test = simulated_datasets[i][1]\n",
+ " functional = functools.partial(ATEFunctional, num_monte_carlo=10000)\n",
+ " ate_plug_in = functional(\n",
+ " PredictiveModel(CausalGLM(p), trained_guide)\n",
+ " )()\n",
+ " analytic_correction, analytic_eif_at_test_pts = closed_form_doubly_robust_ate_correction(D_test, trained_guide(**D_test))\n",
+ " with MonteCarloInfluenceEstimator(num_samples_outer=max(10000, 100 * p), num_samples_inner=1):\n",
+ " automated_monte_carlo_correction = one_step_corrected_estimator(functional, D_test)(\n",
+ " PredictiveModel(CausalGLM(p), trained_guide)\n",
+ " )()\n",
+ "\n",
+ " plug_in_ates.append(ate_plug_in.detach().item())\n",
+ " analytic_corrections.append(ate_plug_in.detach().item() + analytic_correction.detach().item())\n",
+ " automated_monte_carlo_corrections.append(automated_monte_carlo_correction.detach().item())\n",
+ "\n",
+ "plug_in_ates = np.array(plug_in_ates)\n",
+ "analytic_corrections = np.array(analytic_corrections)\n",
+ "automated_monte_carlo_corrections = np.array(automated_monte_carlo_corrections)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Results"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "results = pd.DataFrame(\n",
+ " {\n",
+ " \"plug_in_ate\": plug_in_ates,\n",
+ " \"analytic_correction\": analytic_corrections,\n",
+ " \"automated_monte_carlo_correction\": automated_monte_carlo_corrections,\n",
+ " }\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " plug_in_ate | \n",
+ " analytic_correction | \n",
+ " automated_monte_carlo_correction | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " count | \n",
+ " 100.00 | \n",
+ " 100.00 | \n",
+ " 100.00 | \n",
+ "
\n",
+ " \n",
+ " mean | \n",
+ " 0.31 | \n",
+ " 0.20 | \n",
+ " 0.20 | \n",
+ "
\n",
+ " \n",
+ " std | \n",
+ " 0.11 | \n",
+ " 0.11 | \n",
+ " 0.11 | \n",
+ "
\n",
+ " \n",
+ " min | \n",
+ " -0.01 | \n",
+ " -0.07 | \n",
+ " -0.08 | \n",
+ "
\n",
+ " \n",
+ " 25% | \n",
+ " 0.24 | \n",
+ " 0.13 | \n",
+ " 0.14 | \n",
+ "
\n",
+ " \n",
+ " 50% | \n",
+ " 0.32 | \n",
+ " 0.20 | \n",
+ " 0.21 | \n",
+ "
\n",
+ " \n",
+ " 75% | \n",
+ " 0.37 | \n",
+ " 0.27 | \n",
+ " 0.28 | \n",
+ "
\n",
+ " \n",
+ " max | \n",
+ " 0.57 | \n",
+ " 0.44 | \n",
+ " 0.46 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " plug_in_ate analytic_correction automated_monte_carlo_correction\n",
+ "count 100.00 100.00 100.00\n",
+ "mean 0.31 0.20 0.20\n",
+ "std 0.11 0.11 0.11\n",
+ "min -0.01 -0.07 -0.08\n",
+ "25% 0.24 0.13 0.14\n",
+ "50% 0.32 0.20 0.21\n",
+ "75% 0.37 0.27 0.28\n",
+ "max 0.57 0.44 0.46"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# The true treatment effect is 0, so a mean estimate closer to zero is better\n",
+ "results.describe().round(2)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Text(0.5, 0, 'ATE Estimate')"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhcAAAGwCAYAAAAaKEeDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACe8ElEQVR4nOzdd3hUZfbA8e+U9F5JSELoAUKH0DuISLPXXezruui6dvGnu+ru2nVde13Bta1KU4qg9N576IRACqSSNpMy5f7+uJmEUATCTO7M5HyeJ0+GeyczJxAmZ+573nN0iqIoCCGEEEI4iV7rAIQQQgjhXSS5EEIIIYRTSXIhhBBCCKeS5EIIIYQQTiXJhRBCCCGcSpILIYQQQjiVJBdCCCGEcCpNkgtFUaioqEBabAghhBDeR5PkwmQy0adPH0wmkxZPL5qQyWRCp9Oh0+nk31sIIZoJWRYRQgghhFNJciGEEEIIp5LkQgghhBBOJcmFEEIIIZzKqHUAwrsZjUbuuOOOuttCCCG8n7zaC5fy8/NjxowZWochhEez2WxYLBatwxDNgI+PDwaD4bIfR5ILIYRwU4qicPLkSUpKSrQORTQj4eHhxMXFodPpGv0YklwIl1IUBbPZDEBgYOBl/bAK0dw4EovY2Fj5/yNczvF6nZ+fD0B8fHyjH0uSC+FSZrOZ4OBgACoqKggKCtI4IiE8g81mq0ssoqKitA5HNBMBAQEA5OfnExsb2+glEtktIoQQbshRYxEYGKhxJKK5cfzMXU6djyQXQgjhxmQpRDQ1Z/zMSXIhhBBCCKeS5EIIIYQQTiXJhRBCiCYze/Zs+vbt2yTPlZKSwpIlS5rkuURDsltECCGEU02bNo05c+YAalOm+Ph4rr76au6///4mjWPNmjWEhYU16XMKlSQXwqUMBgM33HBD3W3hpux2yNkKNeUQmgARbcDoq3VUwoMNHTqUl19+mZqaGlauXMnf//53fHx8iImJabIYmvK5REOSXAiX8vf354cfftA6DHE+1mpY+Rrs+BrKT9QfD24BI56GXlPAIC8T7kJRFCottiZ9zgAfQ6N2D/j6+tb9cr/ttttYsmQJy5Yt4+abb25wv2nTplFWVsYHH3xQd+zFF19k//79fPnll4DaI+e5555j6dKlBAcHc++997J06VI6derEM888c94YUlJSeP/99xkzZgzZ2dmMHj2ad999ly+//JJdu3aRnJzMCy+8QK9evS75+xO/TV41hGiuSnPg+ynqFQsAvzAIbQml2VCRB/Mfhq0z4HczIVjeAWpNURRu+Gg9W4+datLn7ZscwQ/3D7zs7Yl+fn6NbmP+yiuvsH37dj788EOioqJ45513SE9Pp1OnTpf8WG+99RZPPfUUycnJvPXWWzz22GP88ssvMljRyaSgU4jmqCQLPh2pJhb+4XD9f+CJQ/DABngyA8a9CgERcGIHzBgPZblaRywAT+x4oSgK69atY82aNfTv3/+Sv76iooK5c+fy5JNPMnDgQDp27MjLL7+M3W5vVDx33303I0aMoE2bNjz00EPk5ORw7NixRj2WOD9J1YRLmUwmaf/tbmrM8N3voCIPS0wKxdd8QGR8D3z0Pup5oy8MuB/aj4H/TobCgzBjIty3AvxDNQ29OdPpdPxw/0CPWRZZsWIFvXr1wmKxoCgKEydO5M9//jOLFi26pMfJzs7GYrHQvXv3umMhISG0adOm7s8fffQRH3/8cd2fFyxYQMuWLc/5eCkpKXW3Hcs2xcXFtGvX7pLiEr9NkgshmhNFgXl/4VDhXr6Ii2d5qIGyJXehQ0dyaDJ/6P4HJrSZgEFvgOj2cNfPMH08FB+BeQ/BDdNBOkZqRqfTEejrGS/b/fv35/nnn8fHx4fY2NjzLjvodDoURWlwzGq1XtJz3XLLLVx11VV1f46NjT3vfX18fBo8N9DoqyDi/GRZRIjmZP8C5hxdwK0t4/gxwIcySwU6dCgoZJZl8syaZ7h1wa3kmfLU+0ckw43TQW+E9Dmw5T/axi88RkBAAMnJybRs2fI36xkiIyMpKChocGzfvn11txMTE/Hx8WH37t11x8rLy8nMzKz7c3h4OMnJyXUfUj+hPUkuhGguasz8e+XT/C0mimq9jsEtB/P5lZ+zbco2lt+0nId7P0yITwj7ivdx56I7ya2orbNI6gdjnldvL34GSo5r9i0I7zNgwAD27NnD3LlzyczM5J133uHQoUN154ODg7nmmmt47bXX2LBhA4cOHeKZZ55Bp9PJ3BU3JsmFEM3E7EUP8h91mjJ/7v5HPhjzAWlxaRj1RqIDormn2z38MPkHEoMTya7I5q5Fd3GqqnZnwsAHIXkIWKvUBEMIJxk6dChTp07l9ddf54YbbsBkMnHNNdc0uM+0adPo2bMn999/P3fddRe9e/emXbt2+Pn5aRO0uCCdcuZiVxOoqKigT58+bN26ta7YT3gnKeh0D9syfuGeVY9i1em4v+VIHrjinfPeN8+Ux92L7+Z4+XGGJQ7jvVHvqe8Q89Lho6Gg2GDKHGg3qgm/g+anqqqKo0eP0qZNG/z9/bUOx62YzWaGDRvGU089xY033qh1OF7HGT97cuVCCC9XZa3ir+v+ilWn40p7AH8a/dZv3r9FUAv+NeJf+Op9WZW9iq/2fVV7IhX63afe/nka2Jt214Jovvbu3cv8+fM5fvw46enpPP744wCMHj1a48jE+UhyIVzKYDAwfvx4xo8fL+2/NfLp1nc4bjMTa7Xy/MDn0Osv/O+QEpnCk2lPAvDW1rfIKstST4yYpva/KDwAe2a5MmwhGvj888+5+uqrueuuu6isrOTrr78mMjJS67DEeUhJrXApf39/FixYoHUYzVZGSQaf7/8agGn2cIJTxl/0196UchPLspaxLncdb2x5g7dHvQ0B4TDoz7D077DyVeh6PVxEsiLE5ejSpQuzZ8/WOgxxCeTKhRBe7O0tb2LFzjBzJWMGP31JPSp0Oh1Ppj2JQWdgWdYy1ueuV0/0u0+9elF0WK5eCCHOSZILIbzUvqJ9LMtZhU5ReMweiq7TxEt+jHbh7bil0y0AvLb5NeyKHfxC1KsXoA49kwZEQogzSHIhXMpkMhEUFERQUBAmk0nrcJqVj3Z+BMA4k5m2ve4GfeP+u/+px58I8QnhcMlhlh1fph7sd5866KzoEBz6xVkhCyG8hCQXwuXMZjNms1nrMJqV/cX7WZa1DJ2icH9ZJfS8rdGPFeYXxq2dbwXgk12fqK2a/UKgz+3qHTa874yQhRBeRJILIbzQF+lfALVXLVImQeDlVdX/vvPvCTAGsK94H2ty1qgH+/0RdAY4ugpO7v7tBxBCNCuSXAjhZQorC1mUqU6evKO0HPrcddmPGeEfwU0dbwLgs92fqQfDk6DLZPX2ho8u+zmEEJdv48aNpKSkUFZWpmkcklwI4WVmHZyF1W6le1U1qSHJ0GqAUx73jtQ7MOqNbMvfxr6i2sFSA6aqn3f/AOZipzyP8GzTpk0jJSWFlJQUUlNTGTRoEHfddRczZ848a/roqFGj6u7bo0cPJk2axA8//HDB53B83bm2uU+YMIGUlBSnb12dMmUKL774olMeS1EUvvvuO2688UZ69epF3759ue6665gxYwaVlZVOeQ6tSXIhhBex2C18f+B7AG4tK4fuNzltRHpMYAxXtLoCgP8d+J96MDEN4rqDrRp2/s8pzyM839ChQ1mzZg3Lli3j008/pX///rz44ov88Y9/PGuc+kMPPcSaNWuYP38+kyZN4tlnn2XlypUXfI74+PizEogdO3ZQWFhIYGCgU78fZ3viiSd46aWXGD16NF988QVz585l6tSpLF26lLVr1zb6cS0WixOjvDySXAjhRVZkrSC/Mp9Im42xJjN0u8Gpj+/YlrowYyGl1aVq4tLnTvXk1hnQ9KOKhBvy9fUlJiaGFi1akJqayv33388HH3zAqlWrmDNnToP7BgUFERMTQ1JSEvfddx/h4eGsW7fugs8xadIkNm3axIkTJ+qOzZo1i0mTJp3VDTg3N5c//elP9OrVi969e/OXv/yFwsLCuvPvvvsuV199NXPnzmXUqFH06dOHRx55hIqKCkC9GrNp0yb++9//1l1pyc7OBuDgwYPce++99OrVi0GDBvHEE09QXHz+q3gLFy5k3rx5vPnmm9x///10796dxMRExowZw3//+1/69+8PwK5du7jrrrvo378/ffr04fe//z3p6ekNHislJYVvvvmG+++/n549e/LRR+denly8eDETJkyga9eujBo1is8///yCf7+XS5IL4VJ6vZ7hw4czfPhw9I3cCiku3tzDcwG4trwC38Q0iGzr1MfvFduLjhEdqbJV1T0X3W4En0C1Jfjx9U59PnEGRYEaU9N+OClhHDhwIJ06deKXX869ddlut7N48WJKS0vx8fG54ONFRUUxZMiQumSlsrKShQsXcv3115/1uFOnTqW0tJQvv/yS6dOnk5WVxSOPPNLgfsePH2fp0qV89NFHfPzxx2zevJlPP/0UgGeeeYZevXpx0003sWbNGtasWUN8fDxlZWXccccddOnShZkzZ/LZZ59RVFTEww8/fN64582bR5s2bRgzZsxZ53Q6HSEhIQB102G/+eYbvv/+e5KTk7nvvvvqEh6H9957jyuuuIJ58+ad9b0D7Nmzh4cffpjx48czb948HnzwQd5++22XdzyV9t/CpQICAlixYoXWYTQLhZWFrM1RL6leXWGCAc6fFqnT6bi10628sP4Fvj/wPbd3uR2df6jaBnz7l+rVi+RBTn9egfpL/vMrIWtj0z5v0gC4e5FTltfatm3LgQMHGhx74403ePvtt6mpqcFqtRIeHn7Rk06vv/56Xn31Vf70pz+xePFiWrVqRefOnRvcZ/369Rw8eJClS5cSHx8PwGuvvcaECRPYtWsX3bt3B9Q6iJdffrluivPkyZNZv349jzzyCCEhIfj4+ODv709MTEzdY3/11Vd06dKFRx99tO7YSy+9xPDhw+umip7p2LFj5zx+poEDBzb48z/+8Q/69u3L5s2bGTlyZN3xiRMnNkgqsrKyGnzd9OnTGThwIA888AAAbdq04fDhw/znP//huuuuu2AcjSVvJYXwEgsyFmBTbHSvqqaNVYFU17xwjG8zngBjAMfLj7OjYId60LEjJX0uVJW65HkFgHPqZ7SiKAq6M5KUe+65h7lz5/LFF1/Qo0cPnn76aZKTkwH46KOP6NWrV91Hbm5ug68dMWIEZrOZzZs3M2vWrHO+cz9y5AhxcXF1iQVA+/btCQ0NJSMjo+5YQkJCXWIBEBsbS1FR0W9+P/v372fjxo0NYrzqqqsA9UrI+f4OLkZhYSHPPvssY8eOpU+fPvTp0wez2XzW30HXrl1/83EyMjLo3bt3g2O9e/fm2LFj2Gyum2wsVy6E8AKKovDjkR+B2qsWrQdDcMwFvqpxAn0CGZs8lh+P/Mjcw3PpFdsLEnpDdIq6NLJvHvT6vUueu1nT6dQrCJYmbkjnE+i0ouAjR46QmJjY4FhERATJyckkJyfz9ttvM2nSJLp27Ur79u255ZZb6n5Zg/oL/3RGo5HJkyfz7rvvsnPnTt57771Gx2Y0nv3r8EKJgNlsZuTIkXUj4E93+hWO07Vu3bpBUnM+Tz31FCUlJTzzzDO0bNkSX19fbr755rOKNt21eFWuXAiXMplMxMTEEBMTI+2/XejAqQMcOnUIXwXGmUzQebJLn+/q9lcDsDhzMWaLWf3l013tg8Gu71z63M2aTge+QU374aTEwrE8MXbs2PPeJz4+nvHjx/Pmm28CEB4eXpd4JCcnnzMBuOGGG9i0aROjR48mLCzsrPPt2rXj5MmTDQo/Dx8+TFlZGe3atbvo+H18fM7aSpuamsqhQ4dISEhoEGdycvJ5f+lPmjSJzMxMlixZctY5RVEoLy8HYNu2bUyZMoXhw4fToUMHfH19OXXq1EXH69C2bVu2bdvW4Ni2bdto3br1WYWvziTJhXC5wsLCBpXZwvl+PvozAMPNZkLtCnSa4NLn69OiD4nBiZgsJpYeX6oe7Fa7Tn50NZTmuPT5hXurqamhoKCAvLw80tPT+eijj5g6dSojR47kmmuu+c2vvf3221m+fDm7d19c19d27dqxYcMGXn755XOeHzRoEB07duTxxx8nPT2dXbt28eSTT9KvXz+6det20d9TQkICO3fuJDs7m+LiYux2O7fddhulpaU8+uij7Nq1i+PHj7N69Wqefvrp8y45XHXVVYwfP57HHnuMjz76iN27d5OTk8Py5cu588472bhRralp3bo1P/30E0eOHGHnzp08/vjj+Pv7X3S8DnfffTfr16/n/fff5+jRo8yZM4evv/6au++++5If61JIciGEh1MUhcWZiwEYV2FSe0+EtnTpc+p1eia3V6+OOJZjiEiGVoMABfbMdOnzC/e2evVqhgwZwqhRo7j33nvZuHEjzz77LB988MEF3y23b9+ewYMH884771z080VERJz3F69Op+ODDz4gNDSU3//+99x5550kJSXx1ltvXdL3dPfdd2MwGJgwYQIDBw4kNzeXFi1a8O2332K327nnnnuYNGkSL730EiEhIefdHafT6XjzzTeZNm0aS5YsYcqUKXVLO6NHj2bIkCEAvPjii5SWlnLttdfy5JNPMmXKFKKioi4pZlCvrvz73/9m4cKFTJo0iXfeeYeHHnrIpcWcADrlYqtLnKiiooI+ffqwdevWBgU0wvuYTKa6f+OKigqCgoI0jsj7pBemc8uCWwhAx8rM4wSMfh6GPOzy580uz+aq2Veh1+lZeuNSogOiYct0mP8wtOgKf2p8MyABVVVVdTsOGvOOVYjGcsbPnly5EMLDOa5aDDeZCVAU6DypSZ43MSSR7tHdsSv2uhhIvQYMvpC3B07uaZI4hBDuR5ILITzY6UsiV1ZUqDs2oi6+SO1yXdVGreR31HwQEAEdagv2dn/fZHEIIdyLJBdCeLA9hXvINeUSgJ4hlVXQ4Yomff4rW1+JDh07C3aSU1FbxNn9ZvXzrh/gjOp6IUTzIH0uhEvp9Xr69u1bd1s417KsZQAMrbLgryhNnlzEBMaQFpfGppObWHR0Efd0u0e9cuEfBuW5cGwNtBnWpDGdqaLaytZjp0jPLSWjwISp2orFZic+LIC2MUGMSImlTbTUAgnhTJJcCJcKCAhg8+bNWofhtZYfXw7AqLJT4BMErQZe4Cuc76o2V7Hp5CZ+OfaLmlz4+EOXa2DbF7Dre02Si1OmGubvPsHiPSfZeLQIi+38desvzNtLWusIpo5oz8hOsee9nxDi4klyIYSHOlZ2jCOlRzCiY2hlJXS4Cox+TR7HyKSR/GPDP9hbtJcTFSeID45Xl0a2fQF7f4QJbzZJXFUWG8v25zNnew4rDuQ3SCiSIgPonhhOpxYhhAX6YNDryD5VyZ6cUtYeLmRz5inumrGZq3u25LlJqUQG+bo8XiG8mSQXQngox1WLvnYftXFWEy+JOEQFRNEzpifb8rexLGsZv+v8O/UKSkg8lJ+AjBXQ8UqXPLfFZmfN4ULm7czl1/Q8yqutdedSW4Zydc+WjOncgrYx59/yfrK0is9WZ/D52qP8uCOXLZmn+OYP/UmOkqUSIRpLkgvhUmazmS5dugCwd+9et+2D74mWZ6nJxchTeeqB9tokFwCjW41mW/42lh5fqiYXer3agnzTx+owMycmF/nlVaw/UsTaw4X8sjePEnP9rIWWYf5c3SuBa3sl0LFFyEU9XlyYP89O7MKkHi35y/+2k1lk5saP1vPVvf0v+jGEEA1JciFcSlEUjh07VndbOEdxVXHdRNKRJjPEdILwJM3iGZ08mte3vM7WvK2cqjpFhH+E2vNi08dwYAFYa8B46UsNVRYbh/IqSM8tZXdOKRsyijhS0HBGTXSwHxO6xTGxR0v6tIpAr2/cLIweSeF8f/9Abv/PJvafLOe2Tzcy/89DiAuTBlZCXCpJLoTwQOtz12NX7KTog4i32TRbEnFICE6gU2Qn9hfvZ0XWCq7tcC0k9YfgFlCRB0dXQYcxv/kYdrtCRmEF246VsPXYKXZklXC4oAKbvWFSqtOpSx4D20YxMiWW/m2jMDQyoThTbIg//7tvALd8soH9J8u5/6utfPfHAfgZXTfgSbiv2bNn89JLL7Fly5bLepwpU6bQqVMnnnnmGSdF5v4kuRDCA63PXQ/AoPJS9YCGSyIOo1uNZn/xfpYeX6omF3qD2i1082ewd+45k4saq51VBwv4cWcuqw4WUFppOes+EYE+pLYMo3N8CH1bR9K/TSThga4ruAwP9OXjKX2Y/N5admSV8PxPe3n5uosfcCVg2rRpzJkzB1BHmYeFhZGSksKECRO47rrr6raljxo1ipwctT+Kv78/rVq14vbbb+fGG2+8qOe55557WLduHd999x3du3d3zTdzCTZu3Mjtt9/O5s2bCQ0NrTv+7rvvnnOiqzdrXt+tEF5AUZS65GJgWRH4BmuyBfVMo1uN5v0d77M+dz0mi4kgnyDocrWaXOyfDxPfAoMPoC53fLc5iw9XHOFkWVXdY/j76OmeGE6f5Ah6JYXTLTGMuFB/dE4a+32xkqOCeOfWXtw5fRPfbjrO2NQWjEyRbaqXYujQobz88svY7XYKCwtZvXo1L774IosXL+bDDz+s+2X70EMPcdNNN1FVVcXPP//Ms88+S2xsLMOHD//Nx8/NzWXbtm387ne/Y9asWW6RXJxPeHi41iE0OelqJISHySjNIL8yHz+dgd7V1dB2RKPqGZytfXh7WoW0osZew5qcNerBVoMgMBoqT0HmagA2ZBQx5l8ree6ndE6WVREd7Mfdg9sw60+D2P38lXz/x4E8Na4TY1PjiA8LaPLEwmF4xxjuGdwGgGfn7MFcY73AV4jT+fr6EhMTQ4sWLUhNTeX+++/ngw8+YNWqVXVXNQCCgoKIiYkhKSmJ++67j/DwcNatW3fBx589ezYjR47k1ltvZcGCBVRVVTU4P2XKFP75z3/y2muv0a9fPwYPHsy7777b4D7Tp09n0qRJ9OzZk+HDh/P8889jMjWs6XHIzs6mU6dOZ42CnzFjBiNHjiQrK4vbb78dgLS0NFJSUpg2bVpdLC+++GLd19TU1PD6668zfPhwunbtyhVXXMEPP/xwwe/Zk0hyIYSHWZervvD2sRnwU4D2v13L0FR0Oh2jW40GYOnxpepBgxE6TwTAnv4jLy3cx62fbiD7VCXxYf7845qurJ02kr9N6kKf5Ah8DO71kvTo2I4khAeQU1LJW78e1DocFEXBbDE36YczC7EHDhxIp06d+OWXX846Z7fbWbx4MaWlpfj4+Fzw72H27NlMnjyZdu3a0apVKxYtWnTW/ebMmUNgYCDff/89TzzxBO+//z5r19ZP69XpdDzzzDPMnz+fV155hQ0bNvD666+f8zkTExMZNGgQs2fPbnB89uzZXHvttbRs2bIueVm0aBFr1qw5b43Fk08+yYIFC3j22Wf5+eef+fvf/+51E6NlWUS4lE6nq9uKqtU7UG9TtyRSkq8e0LiY83SjWo1ievp0VmevxmKz4GPwUbt1bp2Baedc/mMajYKBW9KSeHZiF4L93PslKNDXyD+v7cpd0zfznzVHualvEh002p6qKAq3/3x73S6hptIrthdfjPvCaf9/27Zty4EDB+r+/MYbb/D2229TU1OD1WolPDz8gjUX69ato7KykiFDhgAwefJkZs2axTXXXNPgfikpKTz44IMAtG7dmq+++or169czePBgAO688866+yYmJvLwww/z3HPP8fzzz5/zeW+44Qaef/55nn76aXx9fUlPT+fgwYN88MEHGAwGwsLCAIiKimpQc3G6o0eP8vPPPzN9+nQGDRoEQFKSdju9XMW93iYIrxMYGEh6ejrp6enS48IJamw1bMlTK9cHVlaqU1DDEjWOql73mO7EBMRQYalg48mNAFQlDKRcH0qIrYRBxoO8e2svXrm+u9snFg4jU2K5MrUFdgXe+OXAhb/AhbwhQVcUpcH3cc899zB37ly++OILevTowdNPP01ycjIAH330Eb169ar7yM3NBWDWrFmMHz++rm5j4sSJbNu2jePHjzd4rpSUlAZ/jomJoaioqO7P69at44477mDo0KH06tWLJ598kpKSEiorK88Z+5gxY9Dr9fz666+AemWkf//+JCZe/P/Bffv2YTAYSEtLu+iv8USe8b9bCAHAzoKdVForidL50qHGAm1/u+itqel1ekYmjeT7g9+z7PgyBrcczJNz9jGopje3GFfwWpcM4nu01DrMS/bElSn8ujePxel57MgqoWdSeJPHoNPp+GLcF1Raz/2Lz1UCjM6tezly5EiDX8YREREkJyeTnJzM22+/zaRJk+jatSvt27fnlltu4aqrrqq7b2xsLCUlJfz6669YrVa+/fbbunM2m41Zs2bxyCOP1B07c4eGTqerW+bJzs7mj3/8I7feeiuPPPIIYWFhbN26lWeeeQaLxUJAQMBZsfv6+nLNNdcwe/ZsrrjiCubNm3fJ20v9/ZtH3xRJLoTwII4lkQE1VvWyo8YTR89lRNIIvj/4PauyV/H2kkP8tDOXCkN/bmEF8Tm/gt2mblP1IO1jQ7iudyIzt2bz2qL9fPOHAZrEodPpCPTx3CuA69ev5+DBgw2WI04XHx/P+PHjefPNN/nwww8JDw8/a6fFvHnziIuL4/33329wfO3atXz++ec89NBDGAwX/vlKT09HURSmTZtWtzX2559/vuDX3XjjjUycOJFvvvkGm83G2LFj6845akVsNtt5v75jx47Y7XY2b95ctyzijWRZRLiU2WwmNTWV1NRUzGaz1uF4PEcx56CSAtDpofUQjSM6W1pcGv4Gf/LMebyzZiUA4ybdDH5hYMqH7MtrSKSVh8d0wNegZ92RIjZmFF34C5q5mpoaCgoKyMvLIz09nY8++oipU6cycuTIs2ojTnf77bezfPnys3ZlOMycOZMrr7ySjh07Nvi44YYbOHXqFKtXr76o+JKTk7FYLHz55ZdkZWUxd+5c/ve//13w69q1a0ePHj144403mDBhQoMrEQkJCeh0OlasWEFxcfE5d54kJiZy7bXX8n//938sWbKErKwsNm7cyMKFCy8qbk8hyYVwKUVR2Lt3L3v37pX235eppKqEvUV7ARhQWQXxPSAgQuOozuZv9KdPbD8AjMEHuH1gMjcNaFdfeHpggYbRNV5iRCA39FUv53+yKkPjaNzf6tWrGTJkCKNGjeLee+9l48aNPPvss3XFj+fTvn17Bg8ezDvvvHPWuT179rB///4GVwscQkJCGDhwIDNnzryo+Dp16sTTTz/Np59+ysSJE5k3bx6PPvroRX3tDTfcgMVi4frrr29wvEWLFvz5z3/mzTffZNCgQfzjH/8459c///zzXHnllTz//PNcddVV/PWvfz1vnYen0ikavOJXVFTQp08ftm7dSnDw+acVCs9nMpnq/o0rKiq8brtVU1qUuYgnVj5Be30gc47sh8EPwxUvaB3WOd30zb/YZ5mO0dKGdbfPIcDXAHtmw8y7IKo9/Hmr1iE2SkZBBaP/tRJFgSWPDqN9rOt2jlRVVXH06FHatGnTbNbpPcX777/PokWLmDdvntahuIQzfvbkyoUQHmJD7gYABpoq1ANuVszpsPJgAZv3xgFg88mk0u5oUT4G9D5QdBgKtO8Z0RhtY4K5onMLAD5bfVTjaERTM5lMHDx4kK+//popU6ZoHY5bk+RCCA/QoOV3aSEYfCFJm6LC32KzK7y0YB+KNYxwQ2sUFNbm1DYt8g+tT4j2z9cuyMv0x+FtAZi9LYf88qoL3Ft4k3/84x9cd9119OvX76wlEdGQJBdCeIBjZcfINeXiozPQp6panTjq6367BmZuzeJAXjlhAT5M7qh261yZvbL+Dinj1c8HPLd4rU9yJL1bhVNjs/PdpiytwxFN6JVXXmHPnj38+9//vqgdKc2ZJBdCeID1J9SrFr10AQQqCrRxvyURc42VN39Rlzv+PKo9Y9uMBGBdzjos9tppp47kInszlJ/UIkynmDJQbfL07abjZ42EF0JIciFcTKfT1TXI8YbuglpxbEEdWFq7BdIN6y1mrMskv7yapMgApgxMpmtUVyL8Iii3lLMjf4d6p9B4SOij3j5w4Z4C7uqqrvGEB/qQW1rFyoP5WocjhNuR5EK4VGBgIJmZmWRmZkr770ay2C1sPrkZgIFlxeAbAi17axxVQ1UWG5+vyQTg4dEd8TMaMOgNDE0cCsDKrNOWRjpNUD/v98wtqQD+Pgau761uS/1m4/EL3FuI5keSCyHc3O6C3ZgsJsL1fnSusUDyIHXaqBuZtS2bwopqEsIDmNyzvr23I7lYlbOq/s4ptcnF0ZVQXd6UYTrVbf1bAbBsfz65Jd7Vo0CIyyXJhRBuzlFvMUDxVf/DutmSiM2u1DWVundomwZj0we1HIRRZ+Ro6VGyymqLH2NSILId2Grg8BItQnaKdjHBDGgbiV2BH7Zkax2OEG5FkgvhUpWVlaSlpZGWluZ1HeiaSl29RZE6EdLdijl/3nOCY0VmIgJ9uDmt4ejoUN9QerdQl3Dqdo3odKctjXjurhGAG/uo3++c7dnSgVaI00hyIVzKbrezZcsWtmzZgt1u1zocj1NWU8aewj0ADKwog8BoiO2icVQNfbEuE4ApA1sT6Hv2cs2wRHW42pqcNfUHHcnFocVgs7g6RJcZ1zWOAB8DmUVmth0v0TocIdyGJBdCuLHNJzZjV+y0NoYSb7OpU1D17vPf9mBeOZszT2HQ6/hdbQ3CmYYmqHUXm09uxmypHV6XmAZBMVBVCsfWNlW4ThfkZ+Sqrmo30jnbZWkkJSXlNz/efffdJo9p/vz5dO7cmRdeqG+VP2XKlN+M09F9c9SoUec8/8knnzT59+Fp3KsqTAjRQN2SSE3tCGc3q7dw7JQY0zmWFqHnnkHQJqwNCcEJ5FTksPnkZoYnDVdHrnccB9u/VHeNtB3RhFE713W9E5m9PYd5O0/w14ld8DM23+ZKa9bUX51auHAh77zzDosWLao7dvqOMUVRsNlsGI2u/TU0c+ZM7r33Xr777jumTZuGn58f7777LhaLesXsxIkT3HjjjcyYMYP27dsD9aPTAR566CFuuummBo8pM5IuzH3eAgkhzuIo5hxUWLvd0Y3qLSprbMzapr5bv61/8nnvp9PpGJKgjoZfnXPaOOxOE9XP+xeCB9crDGwXRYtQP0orLSzf37x7XsTExNR9hISEoNPp6v6ckZFB7969WblyJddddx3dunVj69atTJs2jalTpzZ4nBdffLHB7A673c7HH3/MqFGj6N69O5MnT26QtJxPVlYW27dv57777qN169b88ssvAISHh9fFFRkZedax8PDwuscICgpq8H3FxMTItvqLIFcuhHBTWeVZZJVnYdTpSTObIbwVRLbROqw683flUl5lJSkygKHto3/zvsMSh/Hdge9Ylb0KRVHUhmpth4NPIJRlw4md0LJn0wTuZAa9jmt6JvDxqgx+3JHLuK7xLn0+k8l0/lgMhgZTLH/rvnq9noCAgAve19nv0t98802eeuopkpKSCA0Nvaiv+fjjj/npp5944YUXaN26NZs3b+aJJ54gMjKSfv36nffrZs+ezfDhwwkJCWHy5MnMnDmTSZMmOetbEb9BrlwI4aYcg8q6+0QQ5IYtvx3bL2/t1wq9/re7r6bFpeGr9+WE6QRHSo6oB30CoL06f8STG2oBTOqh9vZYtj+fimqrS58rODj4vB9nDtOKjY09732vuuqqBvdt3br1Oe/nbA899BCDBw+mVatWDa4QnE9NTQ0ff/wxL730EkOHDiUpKYnrrruOyZMn891335336+x2O3PmzGHy5MkAjB8/nq1bt5KVdWnzYN544w169erV4GPLli2X9BjNkVy5EC4XHf3b72rFudVNQXW8o3SjuoTsU2Y2ZRaj08F1vRIveP8AYwBp8WmszVnL6pzVtI9Q17ZJmQD75qnJxahnXBy166S2DKV1VCCZRWaW7svj6p4JWofktrp163ZJ9z927BiVlZXcfffdDY5bLBY6d+583q9bu3YtlZWVDB+uJuWRkZEMHjyYWbNm8fDDD1/0899zzz1cd911DY61aNHi4r+BZkqSC+FSQUFBFBQUaB2Gx7HZbWw8uRGAgQXH1IOth2oYUUM/7lB7bgxsG0Vc2LkLOc80NGFoXXJxV9e71IMdrwSdHvLToeS4uvTjgXQ6HRO7t+S95YeZt/OES5OLioqK8547c1Jnfv75a0D0Z+w6yszMvKy4LtbpSzGg/t2d2SPEaq2/+mM2qzuMPv7447N+qfv6+p73eWbOnElJSQk9evSoO2a32zlw4AAPPfTQWd//+URERJCcfP6aInFuklwI4YbSi9IpryknxOBPanU1xHSGEPd4t6QoCnO35wBwzSX8Eh2WOIxXNr3C9rzt6vfmGwKBkZA0AI6vg4OLod8fXBW2y03sEc97yw+z6mABpZUWwgJ8LvxFjXApNRCuuq8zRUZGcujQoQbH9u3bV7djo127dvj6+pKbm/ub9RWnO3XqFEuXLuWtt96q2wECanJx6623smbNGoYNG+a8b0KcRWouhHBDji2o/Q0h6jsAN9qCuvdEGYfyK/A16hnXLe6ivy4pJInWoa2xKlY2nNhQfyJlnPrZg6ekAqS0CKF9bDA1Nju/7s3TOhyPMWDAAPbs2cPcuXPJzMzknXfeaZBsBAcHc/fdd/Pyyy8zZ84cjh8/Tnp6Ol9++SVz5sw552P++OOPhIeHc9VVV9GxY8e6j06dOjF8+HBmzpx50fGZTCYKCgoafPzW1SOhkuRCuFRlZSUjRoxgxIgR0v77EtTVWzhGrLtRMafjqsWYzrGE+l/au3PHILPV2adtSe1Ym1xkroZqz33RVpdG1J0iP+8+oXE0nmPo0KFMnTqV119/nRtuuAGTycQ111zT4D4PP/wwU6dO5eOPP2b8+PHce++9rFixgsTEc9f7zJo1iyuuuELdlXSGsWPHsmzZMoqLiy8qvnfeeYchQ4Y0+Hjttdcu+ftsbnSKBg3xKyoq6NOnD1u3bnVJNbJwHyaTqe7fuKKiQprPXASTxcSQb4dgVawszMohyabAU5ngH6Z1aCiKwuBXlpFbWsVHv+/DuK4Xf+UC1KTpvl/vIzogmmU3LlNf/BUF3ukFp47CzV9BZ8/dKrj/ZBnj/r0aX6Oe7X+9giC/xq88V1VVcfToUdq0adNge6kQruaMnz25ciGEm9l8cjNWxUqibzhJVhu07O0WiQXAruxSckurCPQ1MCIl5pK/vk+LPgQYAyisLGRf8T71oE5Xf/Xi4IUbI7mzlBYhJEcFUmO1s+qgFDKL5kuSCyHcjKPeYpDipx5wo3qLn/ecBGBkp1j8fS69zbWvwZcB8QOAM5ZGHHUXB38BDx5wp9PpGNtFLbxdnH5S42iE0I4kF0K4mbp6iyK1tsFd6i0URWHRHrWW4KpLXA45XV3dxemtwFsNAr9QMOVD7vbLilNrY1PVv5ul+/Ox2Dw3URLickhyIYQbOVFxgsyyTPTo6XfqBBj8IKm/1mEBcCCvnMwiM75GPSNSYhv9OI4pqbsKdnGq6pR60OgL7Uaptw969q6R3q0iiA72pbzKyoaMIq3DEUITklwI4UYcg8q6+scQalcgeSD4uEcx38+71cv8wzrEEHwZhYpxQXF0jOiIglK3BARASm07ag+vuzDodYzprC6N/JJ++VtSNai5F82cM37mJLkQLhcYGChTBC+SY0lkUE3t5fS2IzWMpiFHDcHlLIk4OK5eNFgaaX+F2q3z5G4ozb7s59DSlbVLI7/uzcNub9wLtaOJlKNDpRBNxfEzd/ro+UslHTqFSwUFBf3mZEZRz67Y65pLDcyrHe7lJvNEsk+Z2X+yHL0ORndu/JKIw9DEofxnz39Ym7MWm92GQW+AoChI7AdZG9RunWn3OCFybQxsF0WQr4GTZVXsyimlZ1L4JT+GwWAgPDy8roV3YGDgOfs2COEsiqJgNpvJz88nPDz8rHbyl0KSCyHcxL7ifZRUlxBk8KdbxXEIjIK47lqHBcDy/eovuL7JkYQHnn+ew8XqEdODEJ8QSqpL2FO0hx4xtfMfOl5Zm1ws8ujkwt/HwIiUWBbsPsEv6ScblVwAxMWpV0B+a0aIEM4WHh5e97PXWJJcCOEmHEsiab5R+IC6S+Qihyu52pJ96i+3UU64agFg1BsZlDCIxZmLWZ29uj65SLkKlr4AGSuhxgS+ntt0bWxqCxbsPsHi9JM8Oa5Tox5Dp9MRHx9PbGwsFovFyREKcTYfH5/LumLhIMmFcKmqqiquv/56QG3JK50Gz69uC2pFuXrATZZETNVW1h9Rdz2M7uSc5ALUuovFmYtZlb2KB3s9qB6M6aRORi05riYYncY77fma2shOsfgYdBwpMHE4v4L2sY3vRmwwGJzygi9EU3GPt0XCa9lsNhYuXMjChQux2Wxah+O2zBYz2/K3ATDoRO3QpnbuUcy59nAhNTY7SZEBl/UL8kyDEwYD6nJQgbm2m6VOBx29Y9dIqL8PA9pGAcggM9HsSHIhhBvYmrcVq91KvG84yZZqiGyrvoN3A8tq6y1Gd2rh1ILC6IBoukZ1BWBNzpr6Ex2vVD8fXOzR3TqhftfIL3ulW6doXiS5EMINOPpbDNQHowO32YKqKEpdcjHKiUsiDufs1tl6CPgGQ8VJOLnT6c/ZlBz9LnZklVBYUa1xNEI0HUkuhHADdfUWxbXvcN1kSWTfiXLyy6sJ8DHQv22k0x/f0e9ife56LPbagkWjX/33f8Czl0biwvzpEh+KosCKAzLITDQfklwIobF8cz6HSw6jQ8eAgky1kVTroVqHBcCqQ+ovxAFtI/EzOr+gMDU6lUj/SCosFezI31F/oq7uwrNbgUN9XxDHdl4hmgNJLoTQmOOqRZeAFoTb7eqI9YBwbYOq5RgbPqzjpY9Xvxh6nZ7BLdXCzgZLIx3GAjo4sRPKPbsY0rGctOpggQwyE82GJBdCaKyu3sJaWyzpJksi5horWzLVwWKuSi7gtLqL00ewB8dAy17q7cNLXPbcTaFHYjhRQb6UV1vZnFmsdThCNAlJLoRLBQUFoSgKiqIQFOS5DZFcxa7Y6+eJ5GeqB92kv8WGjCJqbHYSwgNoG+26f7tBLQeh1+k5XHKYExUn6k90uEL9fOgXlz13U9DrdXVTZJftk6UR0TxIciGEhvYV76O4qpgggz89S/LAJ0idr+EGVh6oXxJx5UyLML8wesb0BM61NAIcWQ42q8uevyk4lkaWHZDkQjQPklwIoaG1OWsB6O8Xo7b8bjsCjJc/u8MZVh0qBGC4C5dEHM65NNKylzpfpboUsje5PAZXGtoxGqNeR0aBicxCGeQnvJ8kF8KlqqqquPHGG7nxxhupqqrSOhy340guBpeVqAc6jtUumNPklFRytNCEQa9jUPsolz+fY0vqxpMbqbbV9oPQG6DdaPW2hy+NhPr7kNZa3cq7THaNiGZAkgvhUjabjZkzZzJz5kxp/32GspoydhaoTaIGnzigHuzgHsnF2sPqVYvuiWGE+vu4/Pk6RnQkNiCWSmslW09urT/h+Ps45NlFnVC/JVWSC9EcSHIhhEY25G7Aptho4xdFgtUKLbpBaEutwwKoG1Q2qJ3rr1qAOv3znN06240CdJC3G8pymyQWV3HUXWw8WkRFtWfXkAhxIZJcCKGRtbm1SyK22uZUbrIkoigK646oVy4GtYtusud1LI00SC6CoiCxr3r70K9NFosrtI0JpnVUIBabwppD0q1TeDdJLoTQgKIodcO6huQdVQ92uFLDiOplFJrIK6vG16inT3JEkz1v//j+GPVGjpUd41jZsfoTjqWRw56dXACM6qTOGlkqW1KFl5PkQggNHC45TL45Hz+9D33KiyEgov4dusbW1dZb9GkVgb+P81t+n0+wbzB9YvsAZ+waaT9G/XxkBVhrmiweV3AsjSw/UIDdrmgcjRCuI8mFEBpw7BJJ84nEX1HUX6D6pvtF/lvWNXG9xenOWXcR3xOCYqCmHLI2NnlMztSvTSRBvgYKK6rZnVOqdThCuIwkF0JoYE1u7ZJImdpe212WROx2hfUZtclFE2xBPZMjudh8cjNmi1k9qNfXX73w8C2pvkY9QzuofUNk14jwZpJcCJcKDAykoqKCiooKAgMDtQ7HLZgtZrblbQNgcH6mOgW1/Whtg6q172QZJWYLQb4GuieGN/nztwltQ0JwAha7hU0nT2ucVdcK3AvqLmRLqmgGJLkQLqXT6QgKCiIoKMilLaQ9yeaTm7HYLST4hJJstartvgMjtQ4LqN+C2q9NJD6Gpn950Ol09btGTq+7aDtSTcIK9kFJVpPH5Uwja+eM7M4pJb9MGssJ7yTJhRBNzFFPMNhmQAf178rdgKN5VlNuQT3T6XUXilJb9BgYWT9zxcN3jcSE+NEjMQyA5TJrRHgpSS6ES1VXV3PnnXdy5513Ul1drXU4mlMUhRVZKwAYnpepHuzoHvUWFpudTUfVkeBa1Fs4pMWl4Wfw44TpBEdKjtSfqFsa8fxunbIlVXg7SS6ES1mtVr744gu++OILrFbpSri3eC955jwC9L70N5VCaCK06Kp1WADsyi7FVGMjPNCHznGhmsURYAwgLS4NOHNKam1ykbECrJ6dqDq2pK45XEi1VdriC+8jyYUQTWj58eUADNGH4KcAnSeBm9SirK/tyjmwbRR6vbYxDUscBpyRXMR1h+A4sJjg2DqNInOO1JahxIb4Ya6xsTGjWOtwhHA6SS6EaELLs9TkYmRhtnqg8yQNo2lIy/4WZxqSMASA7XnbKa8pVw/qdPVbUg979tKIXq+rK+yUXSPCG0lyIUQTyS7P5uCpgxjQM6y0SG0M1WqA1mEBUGWxseWY2nNjUHvtijkdkkKSaBPWBqtiZX3u+voTdXUXnt3vAhpuSa0rXBXCS0hyIUQTcRRy9jaGEWa3Q6cJbtOVc9vxU9RY7bQI9aNtdJDW4QDnGWTWdgToDFB40OO3pA5pH42vQc/xYjNHCkxahyOEU0lyIUQTqVsSKamdiOlGSyKOdf/+baLcph+JY0vqmpw12BW7ejAgvH4GS8ZybQJzkiA/I/3bqv1Nlu3P0zgaIZxLkgshmkBpdSlb87YCMPJUHviHQethGkdVz7EF1fHLzh30ju1NoDGQwspC9hfvrz/RdqT6+cgybQJzotGdpO5CeCdJLoRLBQYGkp+fT35+frNu/70qexU2xUYHQzCJVht0ngxGX63DAqDaamPbcbXeon8b7Ys5HXwNvgyIV2tSGnTrbDdK/ZyxAuyevY3T0e9ic+YpSistGkcjhPNIciFcSqfTERMTQ0xMjNtcbtdC3ZJIae22w67XaxhNQ7uzS6m22okO9qVdjHvUWzg4lkZW5ayqP5jQB/xCofIUnNihTWBO0ioqkPaxwdjsCqsPFWgdjhBOI8mFEC5WbatmTY46BXVUaTEExUIb91kS2Vi7JNKvTaTbJYCOos7dBbspqlS3ymIw1v/9HfHsuguob6i1TLp1Ci8iyYVwqerqah544AEeeOCBZtv+e+OJjVRaK4nV+dKlpgZSr3WbXSJwWnLR2n3qLRxaBLWgc2RnFJS6BA2oXxrxouRi+YF8bHbZkiq8gyQXwqWsVisffPABH3zwQbNt//3rMXXQ1sjyMnVQmRstiVhtdrZmOoo53afe4nTDk4YDsDJ7Zf3BdrVFnVkbobpcg6icp09yBKH+Rk6ZLezIKtE6HCGcQpILIVzIYrOw9PhSAK4sL4XwVpDUT+Oo6qXnlmGqsREW4ENKixCtwzmnEYkjAFibs5YaW416MLItRLQGuwUy12oWmzP4GPQM6xgDyJZU4T0kuRDChdafWE95TTkxGOhdVQ09f+c2s0QANh5V6xjSWkdqPk/kfDpHdSY6IBqz1cyWvC31J+qWRrxgS2pdt04p6hTeQZILIVxo0dFFAFxRWoIBHfS8TeOIGqrrb9HG/eotHPQ6PcMTa5dGsk5fGvGe5GJ4x1h0Oth3oozckkqtwxHisklyIYSLVNuqWZal/uIbZzKpOxzCW2kcVT2bXXHL5lnnUpdcZK+sn8PReijo9FB0yONbgUcG+dK7VQSgFnYK4ekkuRDCRdbkrMFkMdHCDj2qa6DX77UOqYEDJ8spq7IS7GekS3yo1uH8pgEtB+Bn8COnIofDJYfVgwHhkOAdrcBBtqQK7yLJhRAuMv/IfACuKitD7xcGnSZqHFFDjnqLPskRGA3u/VIQYAygX5xaCNtw14j3LI04kou1Rwqpsnh251Eh3PsVRXi8gIAAjh49ytGjRwkICNA6nCZTWl1a90twYoVJrbXwda/255tOa57lCUYkjQDOU3fhBa3AO8WF0DLMnyqLnfVHirQOR4jLIsmFcCm9Xk/r1q1p3bo1en3z+XFbnLkYi91Cx+oaUiwWSLtH65AaUJT6eosBbl5v4TAsUe3KubNgJ8VVtW3UvagVuE6nY6QMMhNeovm82gvRhOYdmQfA5AoTtB0B0R20DegMRwoqKDLV4O+jp1tCuNbhXJS4oDg6RXZq2K2zQStwz18aqd+Sml9fuCqEB5LkQrhUTU0NTzzxBE888QQ1NTVah9Mkssqy2FGwA72iMN5kgrQ/aB3SWTZkqO/8e7eKwNfoOS8Djl0jK7JW1B90dOs8suLMu3ucgW2j8TPqySmp5GBehdbhCNFonvOqIjySxWLhjTfe4I033sBiaR4jpeccngPAwMoqYoIToOM4jSM628a6/hbu2fL7fBx1F+ty12Gx1f48OeouvKAVeICvgcHtowFYsk+6dQrPJcmFEE5ksVuYe3guANeXV8DAB9VL925ErbdQCwY9pZjToUtUF6IDojFZTPXdOr2oFTjAmM4tAPh1ryQXwnNJciGEE63KXkVBZQGRNhsjFH/oPUXrkM5yrMhMXlk1vgY9vVqFax3OJdHr9HWFnQ22pLZ1LI14ft3FmNq6ix1ZJeSXVWkcjRCNI8mFEE406+AsAK4uN+HT7z7wDdI4orM5don0SArD38d9Rr9frNPrLuqKHr2o30VsqD89ksIBWCq7RoSHkuRCCCfJrcit28VwfaUV+t2ncUTntqF2ScTT6i0cBsQPwFfvS05FDkdKjqgH2wyrbwVemqNtgE4wtossjQjPJsmFEE7y3f7vUFDoX1lFcu+7ISha65DOydOaZ50p0CeQfvFndOsMCIf4HurtzNXaBOZEjrqLNYcLMVVbNY5GiEsnyYUQTlBprWTm/m8BuM1sgcEPaxvQeeSUVJJ9qhKDXkef5Aitw2m0EYkjgDPqLtqoyyUcXdX0ATlZxxbBtIoMpMZqZ/WhQq3DEeKSSXIhXCogIIA9e/awZ88er27/Pf/wT5TZKkmwWBne424Ics8lB8cuka4JYQT5udculksxPElNJHYW7ORU1Sn1oKOZ1tFV4OENqHQ6HVfI0ojwYJJcCJfS6/WkpqaSmprqte2/FUXhmx0fAnBrpQXDoIc0juj8NtY2zxrgoUsiDnFBcaREpGBX7PXdOlsNAL0PlGbBqaPaBugEjqWRZfvzsNrsGkcjxKXxzld7IZrQusxfOVxdRIDdzrW9H1TX/92Up9dbnM5x9aKuW6dvECSmqbczVp7zazxJWusIwgN9OGW2sO14idbhCHFJJLkQLlVTU8Pzzz/P888/77Xtvz9d/xIAN1h8CB3wgMbRnF9+WRUZhSZ0Oujb2vOTC0fdxdrctfXdOk9fGvFwRoOeUSlqz4tf957UOBohLo0kF8KlLBYLL7zwAi+88IJXtv/etn8OWy1FGBWF2wf+Hxh8tA7pvDZlqlctusSHEhbgvnFerNToVKL8ozBZTGzN36oebHtaUaeH110AjDmt7kIGmQlPIsmFEI1lt/PZ+hcBuFofQVy3mzQO6Lc56i28YUkEzujWmVW7DJLQF4wBYC6E/H0aRuccwzrG4GvQk1lk5kiBDDITnkOSCyEaKX3tK6zWV6NXFO4a/YbW4VzQJg8dVvZbTq+7UBQFjL6QPFA96QVLI8F+Rga2U/+9fpFdI8KDSHIhRGOUZvPO3v8CMD4sheSE/hoH9NuKTTUcyFMnhnrLlQuAgfED8dX7kl2RTUZphnrQi+ouANmSKjySJBdCXCq7nc1z72Kdvw9GBaaO+pfWEV3Q5tp6i44tgokM8tU4GucJ9AkkLV7dIVLXUMvRTCtzDdg8v7ulY0vqjqwS8stlkJnwDJJcCHGJlI0f807VMQCuTx5HUliyxhFdmLfVW5yurluno+4ivgf4hUF1KZzcqV1gThIX5k/3xDAUBZbtk0FmwjNIciHEpTi5h1/WvcwOfz/8dUbu6/+E1hFdlI0ePqzstzimpO4o2EFJVQnoDdB6iHrSW5ZGOsvSiPAsklwIl/L392fTpk1s2rQJf39/rcO5PNXlVP1wO2+Gq2PU7+p2L7GBsRoHdWGlZgt7T5QB0L+t9125iA+Op2NER+yKndU5tUPLvK3uIrV+kJm5xvOXeoT3k+RCuJTBYCAtLY20tDQMBoPW4TSeosC8h5lhK+CE0UhcQCx3dbtb66guyqbMYhQF2sUEERvi4QneeTiuXtTXXdQmF8fWg9Xzm7eltAghMSKAahlkJjxEo5KLrKwsZ8chhHvbOoPs/XP4T1goAI+lPUGA0TMGsW3IUJdEBrT1viURhxFJIwBYm1PbrTO2MwTFgLUScrZoG5wTyCAz4WkalVxcccUVTJkyhR9//JHq6mpnxyS8SE1NDa+//jqvv/6657b/PrEL5een+EdUJFV6PWlxaVzZ+kqto7pozSG56BrdlUj/SCosFWq3Tp2u/uqFF8wZARjbJQ6AJftkkJlwf41KLubMmUNKSgqvvPIKgwcP5m9/+xu7du1ydmzCC1gsFp588kmefPJJz2z/XVUGP9zBAn8D6wID8NX78tzA59DpdFpHdlG8vd7C4ZzdOr2s7iKtdQSRQb6UmC11DdGEcFeNSi46d+7Ms88+y+rVq3nppZfIz8/ntttuY+LEiUyfPp3iYvnBF15AUWDeXygszeTVaPVd//097ic51P23njo0h3oLh7otqdkr1W6djuQiezPUmLQLzEmMBn3drpFF6TLITLi3yyroNBqNjB07lnfeeYfHH3+cY8eO8eqrrzJ8+HCefPJJ8vNlT7bwYFv+g5I+m79FR1Oi15ESkcKdqXdqHdUlaQ5LIg4DWw7ER+9DVnkWR0uPQkQbCGsFdgsc36B1eE4xrqu6NLI4/SR2uwwyE+7rspKL3bt38/zzzzNkyBCmT5/O3Xffza+//sr06dPJz89n6tSpzopTiKZ1cg8s+j9mhgSxOtAfH70PLw99GR83nnp6Ls0puQj0CaRfXD+gdtfI6XUXXrI0Mqh9FMF+RvLKqtmRXaJ1OEKcV6OSi+nTpzNp0iRuvfVW8vPzefXVV1m+fDmPPPIISUlJ9O3bl1deeYW9e/c6O14hXM9SCbPuIUNv4/XoaAD+0vsvdIjooHFgl6a51Fuc7vRBZsBpyYV3FHX6GQ2M6qT2Vlm8R5ZGhPtqVHLx7bffMnHiRJYtW8YHH3zAyJEj0esbPlRkZCQvvviiU4IUokn98leqCg/wWFwclSj0j+/PlC5TtI7qkjWneguHs7p1OpKLEzuhqlS7wJzIsTSyKP2kWlsihBtqVHLx+eef84c//IHY2IbdCRVFITc3FwBfX1+uvfbay49QiKZ0YBFs/pRXoiI4bNQT6R/JK0NfQa/zvH5zzWlJxKFlcEs6RHTArthZk7sGQuMhqj0odji2TuvwnGJ4xxj8jHqOFZnZf7Jc63CEOKdG97k4derUWcdLSkoYPXr0ZQclvIe/vz/Lly9n+fLl7t/+uzwPfpzK7OAgZoUEo0PHy0NfJjogWuvIGsWRXPRvRskFnGOQmWPOSOYabQJysiA/I8M6xgCwSJZGhJtqVHJxvktxZrMZPz+/ywpIeBeDwcCIESMYMWKEe7f/VhT4cSrp1nJerN12+mCvBxnUcpDGgTXO6fUWA7xwEupvcdRdrM1Zi8VugdZD1RNeUtQJMC61fteIEO7IeCl3fvnllwG1Fe3bb79NQEB9+2ObzcauXbvo1KmTcyMUoins+JrijGU8nBBPjU5tJ31vt3u1jqrRHPUWbWOCiA118ytGTtYtuhuR/pEUVxWzLW8b/R1XLk7uhspTEBChbYBOMLpzLEa9jv0nyzlaaKJNdJDWIQnRwCVdudi7dy979+5FURQOHjxY9+e9e/dy9OhROnXqxCuvvOKqWIUHslgsvP/++7z//vvu26GzIh/r4md4Mjaak0YDyaHJvDTkJY+ss3BojvUWDnqdnqEJ6tWKldkrISQOojsCitfUXYQH+jKwnfpvK1cvhDu6pCsXX375JQBPP/00zzzzDMHBwS4JSniPmpoaHnzwQQDuvPNOfHzcsE/Ez0/xboDCxgB/AowB/HvEvwnxDdE6qsvSnJMLUK88/XjkR1ZmreSJvk+gaz0UCg/C0dXQaYLW4TnFlalxrD5UyKI9J7l/eDutwxGigUa9NXv55ZclsRDeIWMFvx79mc/DwwD4++C/0z6ivcZBXZ7mXG/h4OjWebz8OEfLjnpdUSfA2C4t0OlgR1YJJ0ortQ5HiAYu+srFgw8+yCuvvEJwcHDdO9Hzee+99y47MCFczmYlY/FTPBujvru/o8sdjGs9TuOgLl9zrrdwCPIJIi0ujXW561iVtYq2rWuvVuTtBnMxBHp+0hUb6k+fVhFsOXaKX9LzuGNQa61DEqLORV+5CAkJaXD7tz6E8ASVmz/hMWMJZr2etJiePNznYa1DcormviTi4GiotSJ7BQTHQExtsbkXXb2oa6glW1KFm7noKxeOnSJn3hbCI1WW8Or2tzkc6Eu0IZDXRr6FUX9JJUhuS5IL1YikEby86WV25O+gtLqUsNZDoWC/mlx0max1eE5xZWoc/1ywj41Hiyg21RAZ5Kt1SEIAjay5qKqqorKyfo0vJyeHGTNmsGaN97wjEN5twZInmBXoi06BV0a+5bGNss4k9Rb1HN06bYqN1TmroU1tv4vM1doG5kRJkYGktgzFrsCSfXlahyNEnUYlF1OnTmXu3LkAlJWVceONNzJ9+nSmTp3KN99848z4hHC6Yye28/fC9QD8MWEU/RM8s1HWuUi9RUOOpZFVWasgubaoM38vmAo1jMq56hpqydKIcCONSi7S09Pp27cvAIsXLyY6Oprly5fz6quv1m1XFQLAz8+P+fPnM3/+fLfo3lptq+bxZQ9i1uvoazdy/6g3tQ7JqWRJpCFHcrEmZw2WgFCITVVPeGHdxepDhZRXuWkvGdHsNHpZJChI7Qi3Zs0axo4di16vp2fPnnWDy4QAMBqNTJgwgQkTJmA0al/T8O7GV9hvLSPCZuPVfn/FYNA+JmeS5KIhR7fOcks52/O2n7Yl1XuWRtrHBtMuJogam52l+/K1DkcIoJHJRatWrViyZAknTpxgzZo1DB48GICioiLpfyHc1vb87fz30EwA/kE0sV28a2pviblG6i3OYNAbGJKgJhQrs1eeVnfhPVcudDodE7rFA7Bg9wmNoxFC1ajk4oEHHuC1115j1KhR9OjRg169egGwdu1aOnfu7NQAhWezWCzMmDGDGTNmaNr+u9JaybOr/w8FuLq8guGD/w90Os3icYX1R4pQFOgQGyz1FqcZkTQCqE0ukgcDOnXXSIX3vMu/qja5WHmwgIpqq8bRCHGJ7b8dxo0bR58+fSgoKGgwqGzgwIGMGTPGacEJz1dTU8Ndd90FwI033qhZ++8Pd37I8YpsYq1WntS3gA5jNYnDldYcVosUB7f3jp0vzjKo5SCMeiPHyo5x1FJKmxZd1WZamauh6/Vah+cUneJCaBsdREahiaX78ri6Z4LWIYlmrtGTmWJiYujSpQt6ff1DdO/enXbtpMe9cC+HTh3iy/T/AvDXwlOEDn4E9J47lOx81h1R6y0kuWgoyCeItBZpAKzKXuW1SyNXdVMLO3/eLbtGhPYadeXCbDbzySefsGHDBoqKirDb7Q3OL1261CnBCXG57Iqdf274J1bFxiiTmRE+UV7zbvV0uSWVHC00oddB/7ZSb3Gm4UnDWX9iPSuyVnBH6xtgwwfqEDMvMr5bPO8vP8LyA/mYqq0E+XlXsbLwLI366Xv22WfZtGkTV199NTExMei8bO1aeI8FGQvYlr+NAAWmFZ2CEc+Cl+0QAVhbuyTSPTGcUH83nDyrsRFJI3hl0ytsz99O6cAXCEMHRYeg7ASExmsdnlN0iQ8lOSqQY0Vmlh/IZ2L3llqHJJqxRr3Krlq1io8//pg+ffo4Ox4hnKbSWsnb294G4L5TJcRjhN53aByVa6ytq7eQLajnkhCcQPvw9hwuOcyaot1MiO8OJ3bCsbXQ7Qatw3MKnU7H+G7xfLjiCAt3n5DkQmiqUQvPoaGhhIeHOzkUIZzrv+n/Jc+cR0udL1PKyqDbjRDkfb98FUVhrdRbXJCjodbK7JXQurbu4ugqDSNyvvFd1aswy/cXYK6RXSNCO41KLv7yl7/w9ttvN5gvIoQ7Kaws5D97/gPAw/kn8VOA/vdpG5SLHM6voKC8Gj+jnt6tIrQOx205tqSuyVmDpVVty3cvaqYF0DUhlKTIACotNlYcKNA6HNGMNWpZZPr06Rw/fpxBgwaRmJh4VufFOXPmOCU44fn8/Pz4/vvv6243lc92f0altZJufjGMqzgOCX0hvkeTPX9TcmxBTWsdib+PQeNo3Fe36G5E+EVwqvoUO4ICSdPpoTgDSnMgzDu2bup0OsZ3jefjVRks3H2C8d28o55EeJ5GJRfSy0JcLKPRyI033tikz3nSdJLvD6gJzZ+LS9AB9J7SpDE0pbWHZUnkYhj0BoYmDuWnIz+xMm8rafE9IHe7uiW1x81ah+c047upycWy/flUWWyScApNNCq5ePDBB50dhxBO8+muT7HYLfQJ68iAo0vAJxBSr9M6LJew2uxszHAkF95XT+JswxOHq8lF9koebz20NrlY7VXJRffEMBLCA8gpqWTFgYK6wWZCNKVGdxIqKyvjhx9+4M0336SkpARQp6Xm5eU5KzbhBaxWKz/88AM//PADVqvrC8xOVJxg9uHZADxo9VevWqReB/6hLn9uLezOKaW82kqov5HUlmFah+P2HN06M8syyWxR213Yy+ou1F0jakKxUGaNCI00KrnYv38/V155JZ9++imff/455eXlAPzyyy+8+aZ3jbAWl6e6upqbbrqJm266ierqapc/3xd7v8Bqt9I/tg99DyxTD3r1kohabzGoXTQGvfSbuZBg32D6tugLwEoqQGeAU5lQkqVtYE7mmDWydF8eVRabxtGI5qhRycUrr7zCtddeyy+//IKvr2/d8eHDh7NlyxanBSfEpThVdYpZB2cBcE9ICljMENkWkvprHJnr1NdbyJLIxaobZHZyI7RUhy56UytwgF5J4bQM88dUY2PVQdk1Ippeo5KL3bt3c8stt5x1vEWLFhQUyA+y0Ma3+7+lylZF58jODDi6WT3Y7Savm37qUGWxsfX4KQAGSTHnRXP0u9iWt43SVv3Ug164NDKutufFz3tk1ohoeo1KLnx9famoqDjreGZmJpGRMtdAND2zxcw3+78B4J4ON6LLWKGe6H6TdkG52KajxdRY7cSH+dM2OkjrcDxGYkgi7cPbY1NsrA2t7QviZXNGACZ0V+suluzNo9oqSyOiaTUquRg1ahTvv/8+Foul7lhubi5vvPEGY8d63yhr4f7mZ8yntLqUxOBExpwqAMUGLXtDlPdO6V19SL1KOLRDtMz3uUTDEocBsLI6D/RGKD0Op45pHJVz9UqKIC7Un/JqK2sOFWodjmhmGpVcTJs2DbPZzMCBA6murmbKlCmMHTuWoKAgHnnkEWfHKMRvUhSFb/d/C8BtnW/DsGemesKLr1oArDqo/sIY1jFG40g8T123zhMbsNbVXXjX1Qu9Xle3DXWB7BoRTaxRfS5CQkKYPn06W7duZf/+/ZjNZlJTUxk0aJCz4xPigjad3MThksMEGAO4Jro35DwIOr3X9rYAyCur4kBeOTodDG4n9RaXqnt0d8L9wimpLmF7y96kZW9Wl0Z6/V7r0JxqfLd4ZqzL5Ne9edRY7fgaG919QIhLcsnJhd1uZ/bs2fz666/k5OSg0+lISEggJiYGRVHk8qxowNfXl+nTp9fddoWv930NwNXtribk0BL1YOshENLCJc/nDlbXXubunhBGRJBr/l69mUFvYGjCUOZlzGOVr540UHeMKIpXFQD3TY4gNsSP/PJq1h4uZGSnWK1DEs3EJaWxiqLwpz/9iWeffZa8vDw6duxI+/btyc3NZdq0aTzwwAOuilN4KB8fH+68807uvPNOfHx8nP74JypOsCJrBQC3dr4V9v6onuhytdOfy53U11vIkkhjDU9Sd42sKDsCeh8oy4ZTRzWOyrlOXxqRhlqiKV3SlYvZs2ezefNmZsyYwYABAxqcW79+PQ888ABz587lmmuucWaMQpzX7MOzUVDoF9ePtooRcrYCOug8WevQXMZuV+oK9IZ2kCWRxhrccrDarbP8GMcSepCctUW9ehHZVuvQnGp8t3j+u/4Yv+zN4yWbHR+DLI0I17ukn7IFCxZw//33n5VYAAwcOJD77ruPefPmOS044fmsVisLFixgwYIFTm//bbVbmXNIncB7Q8cbYO9P6onkwRDsvZd/954oo8hUQ5Cvgd7JMmK9sU7v1rkiuqV60Au3pKa1jiQ62I/SSgvrjhRpHY5oJi4puThw4ABDhw497/lhw4axf//+yw5KeI/q6momTpzIxIkTnd7+e23OWvLMeYT7hTO61WjYO1c9kXqNU5/H3TjqLQa2i5Z3oZfJ0VBrlWJWD2SuVusuvIhBr2NcV7X+aOEuWRoRTeOSXplKS0uJijp/m+GoqChKS0svOyghLsbMQ+qW00ntJuFrKoTszYAOOk3UNjAXc7RzHtZRlkQul6PuYlvZEcqMflB+AoozNI7K+cbXdutcvPckFptd42hEc3BJyYXNZsNoPH+ZhsFgwGaTTnDC9QorC1mdrV7Cvr7D9XBgoXoiMQ1C4zWMzLXMNVa2HCsGpJjTGZJCkmgX1g6rYmNtQhf14NFV2gblAv3aRBIV5EuJ2cKGDFkaEa53SQWdiqIwbdq0824prKmpcUpQQlzI4szF2BQbXaO60i68Hex/Qj3Raby2gbnYxoxiLDaFxIgAWkcFah2OVxiWNIwjpUdYGRzMVaAujfS9S+uwnMpo0DM2NY5vNx1n4e6TkpgKl7ukKxfXXnstUVFRhISEnPMjKipKdoqIJrEgYwEAE9tNhKqy+nebKRM0jMr1Vp22BVV6yjjHiMQRAKyuKcAK9f0uvMyE2jHsi9NPYpWlEeFil3Tl4uWXX3ZVHEJctGNlx9hduBuDzsCVra+Ew0vAboGo9hDTUevwXMpRzDlc6i2cpkdMD8L8wiitLmVHYDB9K/Kg8JDX/SwNaBtJRKAPxaYaNh4tZrBM0hUuJKXmwuM4rloMaDmA6IDo+nqLFO9eEsktqeRwfgV6nbpTRDiHo1snwKrY1urBTO+ruzAa9FyZKrNGRNOQ5EK4lK+vL++99x7vvfeeU9p/K4rC/Iz5AExoMwFsFjj0i3qyk5cvidTuEumRFE5YgPO7nTZndd06HX+tmWu0C8aFJnRXl0YW7ZGlEeFajRpcJsTF8vHxcWpb+N2Fu8kqzyLAGKD2tsjaCFWlEBil7hTxYssP5AMwMsV7G4RpZXDLwRh1Ro5ayzhuNNLq6Gqw20HvXe+/BraNIjLIl2JTDeuOFMlEXeEy3vU/R3g9x1WLkUkjCfQJhEO/qifajQa9QcPIXKvGamftYXUL4YgU+YXgbCG+IfSJ6wPAipBQMBdCfrrGUTmf0aCvH8MuDbWEC0lyIVzKZrOxYsUKVqxYcdk9UCx2C4szFwMwsW1to6zDtVNQO4y9rMd2d1uPnaKi2kp0sC9dW4ZpHY5XquvWGV57ZejIcg2jcZ2JjqWR9JPUWGVpRLiGJBfCpaqqqhg5ciQjR46kqqrqsh5rfe56iquKifSPZGDLgVCaA3l7AB20G+WcgN3UioPqksiwDjHo9bIF1RUcW1K3UkWpXg8ZKzSNx1X6t4mqmzWy9nCh1uEILyXJhfAYjl0i41qPw6g31l+1SOgDQedvS+8NVuxXizlHdJJ6C1dJCk2iQ0QHrNhZGRgAx9aB5fISYndk0OsY301dGpkvSyPCRSS5EB6hylrF8iz1MvX4trVbTg/X1lt4+ZJIbkklB/LK0etgmIxYd6kxrcYAsCQ0HKyVasGwF5rYXZ0C+8vek1RbZWSDcD5JLoRHWJ+7nkprJXFBcXSP7g7WGjiyQj3ZYYymsbnaytotqD2TwgkPvPztvOL8RrcaDcA6PyNmnc5rl0b6JkfQItSP8iorqw/K0ohwPkkuhEdYclxdAhnTaoza9jprI9SUQ2A0xPfSODrXWr5ftqA2lY4RHWkV0opqFFYH+EOGdxZ16vU6xte2A5+/K1fjaIQ3kuRCuD2L3VK3JOJ4Z1m3JNJ+jNf1IjidugVVfWc5QpILl9PpdIxOVn/GlgYFQu4OMBdrG5SLOJZGft2bR5VFlkaEc3nvq7LwGptPbKa8ppxI/0h6xdZepXD0t+hwhXaBNYEtx4ox1diIDvYltWWo1uE0C466i5VBQVTrFDi6UuOIXKN3q3ASwgMw1dhYcaBA63CEl5HkQriUj48Pr732Gq+99ho+Po1rWe1YEhnVahQGvQFKsyF/L+j03r8FtfZFf1hH2YLaVLpGdyU2MBazDjb4+3tt3YVOd/quEVkaEc4lyYVwKV9fX5544gmeeOKJRs0WsdltLD2+FIArWtVepXBctUjoC4GRzgrVLa2Qlt9NTq/T1y2/LQkK9NpmWlC/NLJ0Xz7mGqvG0QhvIsmFcGs7CnZQXFVMiG8IaXG1s0PqunJ695JITkklB/PUKahDZQtqk3IsjSwPDMRacgyKMzSOyDW6J4aRFBlApcXG8v2yNCKcR5IL4VI2m43NmzezefPmRrX/XnJMTSRGJo3Ex+CjbkF1XKb28uTCcdWiV6sI2YLaxHq36E24XzilBj1b/f28emlkQjf16oUsjQhnkuRCuFRVVRX9+vWjX79+l9z+W1GUunqLul0iOVugpkKdghrXw9nhuhVHvcVIGVTW5Ix6I6NaqfU8v3r90oi6JXXZ/nwqqmVpRDiHJBfCbaUXpXPSdJIAYwCDWg5SDzreQbYd4dVbUKutNtbJFlRNORLapYGB2I6uBJt3/uJNbRlKm+ggqq12lu7L0zoc4SW899VZeLxfj6mFm0MThuJv9FcPnp5ceLEtmadqt6D60SVetqBqYWD8QEJ8Qyg0GthKFWRv1jokl1CXRhwNtWTWiHAOSS6E21qRtQKAMcm17b2ryiB7i3rby5MLR73FiBTZgqoVH4MPVySrdT0/BwXCoV80jsh1JvZQk4uVBwooq7JoHI3wBpJcCLeUVZZFRmkGBp2BwQmD1YPH1oJig8i2EN5K2wBdzFFvMULqLTQ1rvU4QK27sHhxcpHSIoT2scHU2Ows2StLI+LySXIh3NKqnFWAWrUf6lu7LNBMlkSyT5k5lF+7BbW9JBdaSotLI9IvglKDgQ1lh6HMO3dUyNKIcDZJLoRbWpmltlwenji8/qCjYr/tSA0iajqOqxa9W0UQFti4rqbCOYx6I2NbXwnAoqDA+gZuXmhS7dLI6kMFlJplaURcHkkuhEv5+Pjw3HPP8dxzz110+2+TxcTmPLV4bljiMPVgWS4UHgB00Gaoi6J1D6fXWwjtXdXmKgCWBQVSfXCRxtG4TvvYEDrFhWCxKSzee1LrcISHM2odgPBuvr6+PP/885f0NRtyN2C1W0kKSaJ1aGv1YEbt8KiWvSAgwqkxupMqi401tVtQR3duoXE0AqBnbE9a+EWSV13MmhPrGW2tAaN3NjWb0C2e/SfLmb/rBDf1TdI6HOHB5MqFcDsrs+uXRHS62p0SzaTeYv2RIqosdlqG+dMpLkTrcATqrJFx7SYCsMhPD8fXaxyR60zsoXbrXHu4kMKKao2jEZ5MkgvhUna7nfT0dNLT07Hb7Re+v2JnVbZazFm3JKIozSa5WLpfrdQf2Sm2PrESmruqzXgAVgYGYD6wUONoXKdNdBA9EsOw2RUW7pbCTtF4klwIl6qsrKRr16507dqVysrKC95/b9FeiqqKCDQG0rdFX/VgwQGoOAlGf0jq7+KItaMoCsv2qfUWoztLV0530iWqC0l+kVTq9aw85r1FnQCTeyYA8OMO79wZI5qGJBfCrTiuWgxqOUgdVAb1Vy2SB4GPvzaBNYEDeeXkllbh76NnUDuZgupOdDod49qqSyML7aVwKlPbgFxoUvd4dDrYeuwUWcVmrcMRHkqSC+FWHPUWdUsiABmOLagjmj6gJrS09qrF4HbR+PsYNI5GnGlix+sBWB0YQOG+HzWOxnViQ/0Z1C4KgJ92ytUL0TiSXAi3kW/OZ2/RXgCGJtZuN7VZIHONetvLk4tl+9XkYpQsibiltuFt6eYXjU2nY+GRn7QOx6Wu7qEujfwkSyOikSS5EG5jdfZqALpFdyM6oHZZIGerOmI9IBJadNMwOtcqNtWw7fgpAEZ1kuTCXV3dbjIAc6tyUarKNY7Gda7sGoevQc+BvHL2nyzTOhzhgSS5EG7DUW9Rd9UCTtslMtyrR6yvOJCPokCX+FDiwwK0Dkecx7hud+OrwCFfI/t3f6l1OC4TFuDDyE5qEzcp7BSN4b2v1sKjVNuqWX9C7R/QoOV3s9mCKrtEPEGYfxijAtQlg7kHZ2scjWtd3bN+acRuVzSORngaSS6ES/n4+PD444/z+OOP/2b77y0nt1BprSQ2IJbOkZ3Vg9XlkK22AffmeSIWm51VtfNEZEnE/V2dchMAC2pOUFPtvUsjozrFEuxnJKeksm7JToiLJcmFcClfX19ef/11Xn/9dXx9z98y2bFLZGji0PrmUcfWgd0KEW0gIrkpwtXElsxTlFdbiQrypUdiuNbhiAsY2HUKsTaFUr2eVds+1jocl/H3MXBlahwgSyPi0klyITSnKEpdvcW5p6COaPqgmtCy2q6cI1Ji0eulK6e7Mxh9mBjcFoAfM+ZrHI1rTe6ptgNfsPsEFtuFO+wK4SDJhXApu91OZmYmmZmZ523/nVGaQU5FDr56X/rHn9aBU+othJu6usvvAFhtKaSwIk/jaFxncLsoooJ8KTbV1A3UE+JiSHIhXKqyspI2bdrQpk2b87b/diyJpMWnEegTqB4sPwkF+1BHrA8759d5g6OFJjIKTBj1OoZ2kK6cnqJt5+vpXmPDptOxYPsHWofjMkaDnond4wHpeSEujSQXQnMrs+qnoNZxjFiP7wGBkRpE1TQcjbP6t40kxP/8Ba/CzRiMXBPWCYAfji3CrnjvkoFj1sji9JNU1tg0jkZ4CkkuhKZKq0vZUbADOKPl99Ha5MLLl0Qc9RajOrXQOBJxqSZ0vYNgu51jNjMbcrx3DHvvVuEkRgRgrrGxZJ/3LgEJ55LkQmhqbc5a7Iqd9uHtSQhW3yE1lxHr5VUWNmYUAzBatqB6nMAOVzLZXAPAd7s+0Tga19HpdFxdW9gpu0bExZLkQmjqnIPKig5DWQ4Y/KDVAI0ic73Vhwqx2hXaxgTROjpI63DEpfLx5+boPgCsKNjGiYoTGgfkOo6GWisP5nPKVKNxNMITSHIhNGO1W1mTow4lO2dXzlb9wcd7W2E76i3kqoXnapt6E/0qq7ADPxz8QetwXKZjixA6x4disSnM3+29SZRwHkkuhGZ2FuykrKaMML8wusd0rz/RDJZEbHaF5bXJxUhJLjxXh7HcYqoGYNaB77DYLBoH5DrX91avXszelq1xJMITSHIhXMpoNDJ16lSmTp2K0WhscM7ROGtIwhCM+tpzNiscVaejenNysf34KYpMNYT6G0lr7b27YbyeXzAjkkYSa7VSXFPGkuNLtI7IZSb3bIlBr2P78RIyCiq0Dke4OUkuhEv5+fnx/vvv8/777+Pn59fgnCO5GJZwWr3FiR1QXQr+YRDfs+kCbWK/1lbdj+wUi49B/ht6Mp/uN3NDufrL9n/7/6dxNK4TG+LPsNpeLHO252gcjXB38qomNJFdns3hksMYdAYGJwyuP5FR2/K7zTDQG7QJrgks2asmF1d0kS2oHq/9GK6vMWBUFLblb+NA8QGtI3KZ63onAjB7W45MShW/SZIL4VKKolBQUEBBQQGKUv9i5Lhq0TO2J2F+YfVfkOH9/S0yCio4UmDCx6BjWMcYrcMRl8voS2ynyYwymQH4at9XGgfkOld0aUFI7aTUTZnFWocj3JgkF8KlzGYzsbGxxMbGYjab646vyjnHoLIaM2RtVG978Yh1RyOiAW2jCJWunN6h243cUaaOX5+fMZ98c77GAbmGv4+BCbXtwKWwU/wWSS5EkzNbzGw6sQk4o7/F8fVgq4HQRIhsq1F0rverLIl4n+TBdPdvQe+qKqx2q1dfvXAsjSzcLe3AxflJciGa3IYTG7DYLSQEJ9A27LQk4vQtqDrvHD1eVFHN1mOnABjdWZILr6HXQ49bubukDIAfDvxAeU25xkG5Rt/kCJIiA6iotvLL3pNahyPclCQXosk56i2GJw5Hd3oS0Qz6Wyw/UIBdgdSWoSSEe2+DsGap560MrayiXY2FCksFMw/O1Doil9DrdVzbq76wU4hzkeRCNClFURokF3VMRXByl3q77fBzfKV3+LX2nd4YuWrhfSLbok8ezJ2l6tWLr/Z+RY3NO1tlX9dLbai1+lABeWVVGkcj3JEkF6JJ7SveR0FlAQHGAPrG9a0/4ZiCGpsKwd7ZsbLKYmPVwUJA6i28Vs/bmFBhItYO+ZX5LMhYoHVELtE6Oog+yRHYFel5Ic5NkgvRpByDygbGD8TX4Ft/ohksiaw7UkilxUZ8mD+pLUO1Dke4Qpdr8PENZsopta7mi/QvsCt2jYNyjZv6qksj32/OarDNXAiQ5EK4mNFo5I477uCOO+7AaDSyKqt2SSTpjKWPuuTCm5dE1O2JYzq3aFhrIryHXzB0v4kbyisIRs+R0iMsz1qudVQuMaF7SwJ9DWQUmuqKlIVwkORCuJSfnx8zZsxgxowZlNvL2VO0B4ChCUPr71R8FEqOgd4IyYM0itS17Halrr/FGFkS8W597iJYUbi1tvbiwx0feuXVi2A/IxO6qT0vvtucpXE0wt1IciGazOpsdSBZl6guxASe1pnScdUiMQ38Qpo+sCawK6eUgvJqgv2MDGgrg8q8Wnx3SOjLHSUlBOl8OHDqAMuOL9M6Kpe4KS0JgAW7T1BRbdU4GuFOJLkQLqUoCiaTCZPJVPcCOyJpRMM7HfX+lt+OWSLDO8bgZ/TemSmiVt+7CLPb+Z1ZHcH+wc4PvPLqRd/kCNrGBGGusbFgV67W4Qg3IsmFcCmz2UxwcDDBwcGsPboWgJFJp7X2ttubxTwR6crZzKReBwER3J6fRbDBj0OnDvHrsV+1jsrpdDodN/VVr17I0og4nSQXoslU26uJD4onJSKl/uCJHVBZDL4hkNBHs9hc6XiRmQN55Rj0OkakyKCyZsE3EHrfQZhdYYrVH4CPdn7klVcvruudgEGvY9vxEg7ne2dXUnHpJLkQTWpE0oiGOyUOL1E/tx0OBu8c4vVrbSFnWusIwgN9L3Bv4TX6/QF0Bn5/fA8hxkAOlxzml8xftI7K6WJD/BmZovam+X6LDDMTKkkuRJM6q97CkVy0H9PksTSVJXVLInEaRyKaVFgidJ5EqF3hdqN6xeqDnR9gs3vfsC9Hz4vZ27Kx2Lzv6oy4dJJciCYTZAwirUVa/YHKU5C9Wb3dfrQ2QblYqdnCpsxiAMZ09s7Oo+I3DJgKwO8PbSLUJ4SjpUeZlzFP46Ccb2SnWKKD/SisqGHpPu8cNy8ujSQXoskMbDkQn9OXPjJWgGKH6BQIb6VZXK60dH8eNrtCxxbBJEcFaR2OaGpJ/SCpP8HWav4QkAzAe9vfo8rqXfM4fAx6ru+jzhv5dtNxjaMR7kCSC9FkhiUOa3jAsSTS4YqmD6aJLNqjDiob1zVe40iEJnQ6GPIIALfuX0N8YAvyzHl8s/8bjQNzvlvT1DcIqw4VcLzIrHE0QmuSXAiXyjXlEto3lLC0MIYkDak/oShweKl620uXRMw1VlYeLABgXKrUWzRbHa6EmM74VZfxYFAHAD7b9RklVSXaxuVkraODGNohGkWBb+TqRbMnyYVwqfUF62n1YCuu/8f1tAg7rcdDXjqUnwBjALTyzpbfKw8UUG21kxQZQOd47+w8Ki6CXg9DHgZgwp5f6BjennJLOZ/u/lTbuFzgd/3VpZ8ftmRRbfW+wlVx8SS5EC61InsFcEbjLKhfEmkzFHz8mzaoJrIovXZJJDVOBpU1d12vh4jWGMyFPBLQDoBv939LToV3jSsf0zmWuFB/ikw1dUuConmS5EK4TGl1KdvytgHnmIJatwXVO+staqx2ltVWzY/rKksizZ7BB4Y9CcDgHbPpH9sHi93Ce9vf0zgw5zIa9NzST+3Y+fVGWRppziS5EC6zPGs5lioLe+7cQ6vQVphMJvVEdTkc36De9tJ6i3VHCimvthIT4kevpAitwxHuoPvNENkWnbmIR3zVnRXzM+aTXpiucWDOdUtaKwx6HZuOFnMoTzp2NleSXAiXWXJsyblPHF0NdgtEtIGodk0bVBNZXLskcmVqC/R6WRIRgMFYd/UidcvXTEweC8Crm19FURQtI3OquDD/up4ucvWi+ZLkQrhEeU0563LXnfvk4doBTl7aldNmV/glXe3KOS5VtqCK03S7EWI6QeUp/lJtIMAYwPb87SzOXKx1ZE7lKOyctS0bc42MYm+OJLkQLrEyeyUWu4Xk0OSGJxTF6/tbbMkspshUQ1iAD/3bRmodjnAnBiOMfg6AuM1fcFeHGwD419Z/eVVjrSHto0mOCqS8ysq8nTKKvTmS5EK4xK+Z6tWJUa1GNTyRvw9KjoPBD1oPOcdXej7HLpHRnWPxMch/MXGGlKsgaQBYq7gzN4O4oDhOmE7wRfoXWkfmNHq9jtv6qU21vlh3zKuWfcTFkVc+4XRmi5m1uWsBGJ10RsHmgQXq57YjwNf72mEryulLIrJLRJyDTgdj/wFAwI7/8UibawD4z57/kG/2nrkcN6cl4e+jZ++JMjYdLdY6HNHEJLkQTrcqZxXVtmpahbSiQ0SHhif3L1Q/dxrf9IE1gT05ZeSUVBLgY2BYxxitwxHuKqmfWn+BwlXbZtEjpgeV1kre3va21pE5TXigL9f3Vqel/mfNUY2jEU1NkgvhdI4lkSuSr8BoNDJ+/HjGjx+PwZQHudsAHXS8StsgXWT+bnV9eWSnGPx9DBpHI9zaFf8A32B0OVt5KrQbAD8d+Yk9hXs0Dsx57hrcGoBf9+XJvJFmRpIL4VSV1kpW56wG1OTC39+fBQsWsGDBAvyPLVPvlJgGIS1+41E8k6IoLNh1AoAJ3VpqHI1we6HxMOJpALqt+5hJjq2pm7xna2r72BCGd4xBUWDGukytwxFNSJIL4VTrctZRaa2kZVBLukR1aXjSy5dEdmaXkn2qkkBfA6M6xWodjvAE/f8IMZ3BXMRfyqoIMAawo2AHizIXaR2Z0ziuXny/JYvyKou2wYgmI8mFcKpfjv0CqFctGszTqCqDo6vU250mahCZ682v3XI3unMLAnxlSURcBIMPjH8dgBbbv+HuZDXx9qatqcM6xNAuJoiKais/bMnWOhzRRCS5EE5TbatmZfZKAK5orfawMJlMBAUFERQZi6mqBqI6QHSH33oYj2S3KyzY7VgSkcZZ4hK0GaoONlPs3Ll/NXGBcZw0nWRG+gytI3MKvV7HXYPbAOrSiM3uHUs+4rdJciGcZkXWCkwWE/FB8XSL7lZ33Gw2Y66sVv/gpUsi27NOcaK0imA/IyNSZJeIuERj/wm+Ifhnb+HR0K4AfL7nc/JMeRoH5hzX9U4gLMCH48Vmlu7zju9J/DZJLoTTzM+YD8CEthPQ687zo5UyoQkjajrzdqpXLa7o0kJ2iYhLF9oSrvwnAOM2f0PPiE5etTU10NfIrbVNtT6TbanNgiQXwilOVZ1iTfYaACa2PU9NRVAMJPZtwqiahs2usLB2SWRid1kSEY3U+w5oOwKdtYqnCosAmJcxj90FuzUOzDnuGJSMsXZa6tZjp7QOR7iYJBfCKRZnLsaqWOkc2Zl24eeZdNrhCtB737v6zZnF5JdXE+JvZGgHWRIRjaTTweR3wTeYrse3Mjm0E+A9U1PjwwK4tpc6av7DFYc1jka4miQXwikcSyJnXbU4/UWxw7gmjKjpOHpbXJkah69R/kuJyxDeCq74OwB/2beWAIMfOwt2es3W1PtHtEOngyX78tl/skzrcIQLySuhuGzHy46zs2Anep2e8W3PKNjM2VZ/u433DSqz2uz8vEeWRIQT9bkL2gwjtsbEPRY/QN2aWmmt1Diwy9cuJpjxXdX/Jx+uOKJxNMKVJLkQl21BhjqMbGD8QKIDohuc0+//ieHJBoZ3iUPv532DyjYeLaawooaIQB8Gt4++8BcIcSF6fd3yyB3H04k3BnHSdNJrpqb+aYS6bDpvZ660BPdiklyIy6IoCvMy5gHqLpEG7HYCDs9nxZ1BrJj9OQEBARpE6Fo/7VAbZ12ZGifj1YXzRLSG8a/jryg8eiIL8J6tqV0TwhjeMQa7Ah+tkqsX3kpeDcVl2VW4i6zyLAKMAYxudcZ49eProfwE+IVBu1HaBOhCVRZb3S6Ra2oL1YRwmh63Quq1XFlRQU+rjkprJe9sf0frqJzigZHtAZi5JZu8Mu/oRCoakuRCXJZ5R9SrFqNbjSbQJ7DhyfTZ6ufOE8Ho18SRud4ve/Mor7aSEB5Av9aRWocjvI1OBxPfQheayFN5ahLrLVNT+7WJpG9yBDU2u4xj91KSXIhGq7HV1FWxn7VLxGaFvT9iqlGIufsbYmJiMJlMGkTpOrO3qXMSruudgF6vu8C9hWiEgAi47mO61liYXF4BeM/UVMfVi682HKPYVKNxNMLZJLkQjbb0+FJKq0tpEdiCAfEDGp7MWA6mAgiMpPBUKYWFhdoE6SL55VWsOlgAULd3XwiXaD0EhjzCX06VEmBXvGZq6oiUGLomhGKusfHRSqm98DaSXIhGm3VwFgDXdrgWw5nNsXZ+q37uck3TBtVEftqRi12B3q3CaRsTrHU4wtuN/D9i43pyT2kpAP/a4vlTU3U6HY+NTQHgi3WZnCz17O9HNCTJhWiUrLIsNp7ciA4d17a/tuHJqlLYr25PpduNTR9cE5i1LQeA63onahyJaBYMPnDD59xRqSPOauWk2Tu2po7oGENa6wiqrXbeXXZI63CEE0lyIRpl9mG1WHNQy0G0DG7Z8OTen8BaBdEpEN9Dg+hca29uGftOlOFr0EvjLNF0Ilrjf/V7PFpcAsB/dn1Cvjlf25guk06n4/Haqxffbc6SvhdeRJILccksNgtzDs0B4PqO1599h53/Uz/3uEWtePcyjkLO0Z1jCQ/01Tga0ax0mcy4Lr+jZ1U1lfYa3t7wstYRXbb+baMY1jEGq13h30sOah2OcBJJLsQl+/XYrxRVFRETEMOIpBENTxZnwLE1gA6636RFeC5ltdmZW9s4S5ZEhBZ0V77IUzq1G+xPWUvYk7dT44gu3+NjOwIwZ0cOB/PKNY5GOIMkF+KSfbtfLda8MeVGfPQ+DU9u+6/6uf1oCEtEr9fTt29f+vbti17v+T9uqw8XUlhRTWSQLyNSZAKq0IDRj67Xf8lkczUAry77i8dvTe2eGM641DgUBf71i1y98Aae/2ovmtS+on3sKNiBUW/kxo5nFGtaa2D7V+rtPncCEBAQwObNm9m8ebNXtP+etVVdEpnco6W0+xbaiWrHQ/2mEWC3s6OmiMUb/6V1RJft0bEd0elgUfpJth8/pXU44jLJq6O4JP87oNZTXJF8xVlDyjj4s9rbIigWOnrfePViUw2/pKuzHW7oI0siQlst+tzNPUHqELB/7f2cqpLjGkd0eTq2COG6Xur/qxfm7cVu9+yrMc2dJBfiohVWFjL/yHwAbut029l32DpD/dzr9+rWOS8ze1s2NTY73RLC6JoQpnU4QnDHpC+Is+s4YdDz3x9/B3ab1iFdlifHpRDoa2BHVglzd+RoHY64DJJciIv2v/3/o8ZeQ/eY7vSIOWOLadEROLJcvd17St1hs9lM69atad26NWaz524zUxSFbzap7wxv7ddK42iEUPkHRPBo74cB+MxeTP7yf2gb0GVqEerPg6PUtuCv/LwfU7VV44hEY0lyIS5KpbWS7w58B8CdqXeiO3OL6caPAQU6XAmRbesOK4rCsWPHOHbsmEcXnW06WkxGgYlAXwOTe7a88BcI0UTGdb+LnoGJVOr1vL3/v5C5RuuQLsvdg9vQKjKQ/PJqPlhxWOtwRCNJciEuyk+Hf6KkuoTE4ERGJZ0xPr2qFHZ8rd4ecH/TB9cEvq29anF1z5YE+xk1jkaIejqdjmkj3wDgp+Agdv34BzB57iwffx8Dz0zoDMCnq49KYy0PJcmFuCCL3cL09OkATOky5ew5Itu/gpoKiOkEbUdqEKFrFVZUs3D3SUCWRIR7So1O5Zo26mTiV/1t2Gf9Aex2jaNqvLFdWjCkfTQ1VjsvLdyndTiiESS5EBe0MGMhORU5RPpHcm2HM+aI2Ky1SyJA//u9siPntxuPU2Oz0zMpnO6J4VqHI8Q5/SXtMQIN/uzy92NB/gZY47nbU3U6HX+d2AWDXsei9JOsOeS5V2KaK0kuxG+y2W18tvszAO5IvYMA4xm9KtLnQMkxCIiE7jdrEKFrWWx2vt6oLoncMShZ42iEOL/ogGju66EuS74VEY55xUseXX+REhfClAHq/7ln5u6mssazd8I0N5JciN+0OHMxmWWZhPmFcXPKGcmD3Q6r31RvD5wKvoFNH6CL/ZKex8myKqKDfRnfTYaUCfc2pcsUkkKSKDAa+SwsGGbeAxWeO9zssbEdiQ/z51iRWeaOeBhJLsR5We1WPtz5IQBTOk8hyCeo4R0OLISCfeAXCml/OOdj6HQ6unTpQpcuXc7eYeIBvliXCcBt/VrhZzT89p2F0JivwZfH+z4OwBdhYWRXFcDsP3hs/4sQfx9evLYrAJ+uzmBXdom2AYmLJsmFOK+fjvxEZlkm4X7h/K7z7xqeVBRYrVaok3YvBISf8zECAwNJT08nPT2dwEDPurKxM6uETZnFGPU6busvSyLCM4xMGsmA+AHU6OBfUdGQsQJWvaF1WI02qlMLJvdoiV2BJ2fuwmLz3ELV5kSSC3FO1bZqPtjxAQD3druXYN/ghnfYvwByt4NPIAyYqkGErvfJqgwAJvdsSVyYv8bRCHFxdDodT6Y9iUFn4NdAPzb5+8GKlyFjpdahNdpzk7oQEejD/pPlfLzyiNbhiIsgyYU4p//t/x955jxaBLbglk63NDxpt8HSv6u3B/wJgr1vOujxIjM/7zkBwH3D2l7g3kK4lw4RHbgp5SYAXkloixUFZt0L5XkaR9Y4UcF+PD85FYB3lh7mcL6MZXd3klyIsxRXFfPxTnV76dSeU/Ez+DW8w87/QeEB8A+HQQ/95mOZzWZSU1NJTU31qPbfn63JwK7A8I4xdIoL1TocIS7ZAz0fIMwvjEN2E9+17ACmfJh1j8fWX0zu0ZKRKTHU2Ow8+v1OaqyyPOLOJLkQZ3l/+/uUW8rpFNmJq9td3fBkjRmWv6TeHvrYeWstHBRFYe/evezdu9dj2n8XVlTz/ZYsAP4oVy2EhwrzC+OhXmry/16QgQL/EMhcrS6ReCCdTsdL13UjLMCHXdmlvPnrAa1DEr9BkgvRwMFTB5l5aCaAum57ZjfONW9BWTaEJkK/c+8Q8XSfrsqgymKnR2IYA9tFaR2OEI12fYfr6RrVlQqrmTe7DFMPrnoDDi/VNrBGig8L4NXruwPw8coMVh8q0DgicT6SXIg6dsXOixtexK7YuSL5CtLi0hreoTgD1r6t3h73EvgEnP0gHq6oopr/rj8GwF/GdPDI7bNCOBj0Bp4d+Cw6dCw4tZtN3a8GFHV7almu1uE1yriucfyuv9qG/9Hvd1JUUa1xROJcJLkQdeYensu2/G0EGAN4ou8TDU8qCix6GmzV0HYEdJ6sSYyu9tmao1RabHRLCGNkSqzW4Qhx2VKjUuuKO/+pO4UlriuYi9QGWzbPHGn+7IQudIgNpqC8msd/2OkxS67NiSQXAoCiyiLe3KJ223yg5wPEB5/RjXLPLDi4CPRGuOp1r5whUlRRzX9rm2Y9NFquWgjv8edefybSP5KjZZn8t9c14BsCx9fBsn9oHVqjBPgaePe2Xvga9Sw/UMDnazO1DkmcQZILgaIovLjxRcpqyugU2enshlnlebBQ7frHsCchpmPTB9kE3l12GFONja4JoYzpLFcthPcI8wvjsb6PAfDRoe/JGveCemLtv2Hvj9oFdhk6xYXybO1o9pcX7mNjRpHGEYnTSXIhWJS5iF+P/YpRZ+T5Qc9j1BvrTyoKzH8YKk9BXHcY+uglPbZOpyM5OZnk5GS3vhJwvMjM1xvVWotp4zq7daxCNMaktpNIi0ujylbFC4XrUQY8oJ6Y8yfI98yx5lMGJDOpR0usdoWpX28jp6RS65BELUkumrl8cz7/3PBPAO7rfh+pUakN77DpE3WGiN4HrvkQDD6X9PiBgYFkZmaSmZnp1u2/3/jlABabwtAO0QzpEK11OEI4nU6n4/mBz+Nv8GfjiY3Mbt0T2gwDiwn+9zuoLNE6xEum0+l47frupLYMpchUw33/3SLTU92EJBfNmM1u4+nVT1NWU0bnyM7c2/3ehnfI3gqLn1Fvj/0nxHVt+iCbwI6sEn7amYtOB9Ou6qR1OEK4TKvQVjzY60EA3tj2FnkTXoOwJCg+ArPvUycde5gAXwMfT+lDZJAv6bllPDVrlxR4ugFJLpqxT3Z/wqaTmwgwBvDqsFfx0Z92VaIiH364A+wWdWdI/z9qF6gL2ewKf/txDwDX9kogtWWYxhEJ4Vq/7/x7ukV3o8JSwT93fYBy05dg9IdDiz22wVZiRCAf/K43Rr2On3bm8nHtXCChHUkumqkNJzbw0c6PAPjrgL/SJqxN/ckaM3x7C5RmQWRbuPq9Ru8OqaysJC0tjbS0NCor3W899LvNWezKLiXEz8jTV3XWOhwhXM6gN/DCoBcw6o2syFrB4po8mFTbv2bVa7BvvqbxNdaAtlE8N6kLAK8u2s/8XZ7Zx8NbSHLRDGWVZ/H4ysexK3auaX8Nk9pNqj9pt8GcP0LOVgiIgNt+AP/Gv5u32+1s2bKFLVu2YHezS66nTDW8tng/AI9c0ZGYEL8LfIUQ3qFDRAfu63YfAC9ufJH8DqOg/5/Uk3PuhwLPbK39+wHJ3D4wGUWBR7/bybrDhVqH1GxJctHMmCwm/rL8L5RWl9I1qivPDni2/qTdDj8+APt+Ugs4b/4aottrF6yLPT8vnRKzhU5xIdw+MFnrcIRoUvd2u5fOkZ0pqS7h/9b8H/YrXoDkIVBTDt/eCuZirUO8ZDqdjucmpTK+Wxw1Njv3fbmVPTmlWofVLEly0YxY7BYeW/kYh04dIjogmn+P/Hf9xFO7DeY9BDu/BZ0BbpwOrQdrG7ALLU4/yY87ctHr4NXru2M0yH8F0bz4GHx4ddirBBgD2HhiI1/s/wZunAFhrdQCz//dBpYqrcO8ZAa9jn/d1JMBbSOpqLZy5/TNHC/ynInM3kJeUZsJRVH454Z/sjZnLf4Gf94Z+Q4tglqoJ63VMPMu2P4l6PRw/afQedJvP6AHO2Wq4Zk5ahHnH4e3o0dSuLYBCaGRNmFteCrtKQDe2f4O6dX58LvvwS8Mjq9Xr2S62XLmxfD3MfDJ7X3pHB9KYUU1Uz7fSH6Z5yVKnkySi2ZAURT+tfVfzD40G71Oz+vDX6dbTDf1pKkIvrpe7dJn8IUbPoeu12sbsAvZ7QqP/7CTwopqOsQG8/CYDlqHJISmrutwHVckX4HVbuWpVU9hjkiGm/+rtvrfMxOWv6h1iI0S6u/DF3elkRgRwLEiM7d8soE8STCajCQXzcCHOz9kRvoMAP424G+MSBqhnjixCz4ZAZmr1VkDv5sJqddqFWaT+GR1Bkv35+Nr1PPvW3riZzRc+IuE8GI6nY7nBj5Hi8AWHCs7xosbX0RpM7x+B8nqN2Dbl9oG2Uixof58+4cBJIQHkFFo4pZPNnCyVBKMpiDJhRdTFIV3tr3Dhzs/BGBav2lc3/F6taX3xo/hszFQelzdbnrvr9B2uEviiI6OJjpa+66XGzOKeH2xWgX//KRU6WkhRK0wvzBeHvoyep2en478xNf7voZev4dhtdOR5z0Ee3/SNshGSooM5H/3qQnG0UITt3yynhOl7rct3ttIcuGl7Iqd1za/xqe7PwXgsT6PqQPJTmXC1zfAz0+q49M7jIU/LINY1/R4CAoKoqCggIKCAoKCglzyHBcjo6CCP361FZtd4ZqeLbm1X5JmsQjhjtLi0nisjzrc7I0tb7A+dz2MfEZNMhQ7zLwbDi3ROMrGSYoM5Ls/DiAxIoDM2iWS7FNS5OlKklx4oUprJY+vfJyv9n0FwP/1/z/u7HQrrHod3u8Ph5eAwQ+ueg1u+17tZ+HFik013D1jMyVmCz2Swnn5uu4ymEyIc5jSZQqT203Gpth4fOXjZJVnw6R3IPU6tVvvd7+DzDVah9koiRGBfPfHgSRFqjUY132wjr25ZVqH5bUkufAyhZWF3L3obn499is+eh9eGvISt/rEwYeDYdk/wVoFrYfC/WvUlt5e/ku2xFzDlP9sJLPITGJEAJ/d3pcAX6mzEOJcdDodfxv4N7pGdaWspoyHlj+EyVYF130CHceprx/f3KzOHfJACeEBfP/HgaS0CCG/vJqbPl7PmkPSaMsVJLnwIgdPHeS2Bbexp2gP4X7hfNrzMSat+QS+vAaKDkFQDFz3KdwxD2I6NklMlZWVjBgxghEjRjR5++8Scw2/+2wj6bllRAX5MuOuNOnCKcQF+Bn8+PfIfxMTEMPhksM8vvJxLDrgxi/UKao1FepryrF1WofaKPFhAXx//0D6t3H0wdjEnO3ZWofldXSKBuPjKioq6NOnD1u3biU4OLipn97rKIrC3MNzeXnTy1RaK2kdGMf7NcG0OrRMvYPeB/reDSP/DwLCmzQ2k8lU929cUVHRZHUXx4vM3P3FZg7nVxAV5Mu39w2gY4uQJnluIbzBroJd3LP4HqpsVUxqO4l/Dvkn+hozfHMTHFsLxgC4+UvocIXWoTZKtdXGo9/vZMGuEwA8MqYjfx7VHr3eu6/mNhW5cuHhTBYT01ZP42/r/kaltZIBBPDVvi1qYqEzqMVYD22D8a81eWKhlc2ZxVzzwVoO51fQItRPEgshGqF7THfeHPEmBp2BeRnzeGXTKyi+QfD7WdDhSrBWqgMO98zSOtRG8TMaePeWXtw7RB3a+NaSg9z35RbKqiwaR+YdJLnwYHsK93DTvBtZeHQhBgX+UlzCx0cPEKYA3W6EBzbB1e9DeCutQ20SFpudf/16kJs/Xk+xqYauCaH8+MAQSSyEaKRhicP4x+B/oEPHt/u/5bXNr6EY/eGWr6HrDWC3wsx7YPNnWofaKHq9jmcnduHV67vha9SzZF8+V7+3loN55VqH5vFkWcQDmS1m3t/8Bl8dmokdhXirldfyC+lpM0DvKTDwAYhorXWYQNMti2zOLOaFeensyVGrv6/tlcCL13Yl0NfokucTojmZfWg2z617DoCbU27m6X5PYwBY+Dhs+Vy9U997YNwrYPTVLM7LsTOrhD99tZXc0ioCfQ28fF03ru6ZoHVYHkuSCw+zbtcX/H3Hu+Qo1QBcVWHimUoDYX3uhn5/gCDtm1WdztXJxa7sEj5ccYSf95wEINTfyD+v7cbkHi2d+jxCNHezDs7ihfUvoKAwrvU4XhzyIr56H1j9proTDQVaDYSb/gvBsVqH2yhFFdX8+dvtrDtSBMDkHi35+9WphAd6ZsKkJUkuPIG1huzt0/n37k9ZbFCTijirlb8qUQzr9xB0uRqM7rkLwhXJxSlTDQv3nGDu9hw2Z54C1B21t6S14rGxHYkOds+/CyE83aLMRTy9+mmsdiu9Y3vz1si3iPSPhIOLYda9UF0GoQlw05eQ2EfrcBvFarPzztJDvL/iCDa7QotQP16/oQfDOsZoHZpHkeTCnRUepmzLp3ya8SNfBxqx6HToFIXbfFvy58F/Iyh5iNYRXpDJZCI2Vn0Xk5+ff0nJhaIolFZayD5VyaH8cvbmlrEho5g9uaU4fmqNeh2Te7bkj8PakRIntRVCuNr63PU8uuJRKiwVJAQn8NaIt+gc1RkKD8G3t6rb3nUGGPY4DH3cY5dJth8/xWPf7ySj0ATAbf1b8eSVKXIV4yJJcuFuLFWw7ydMW6fzv5LdzAgLpcSgNn0a4B/P44P/TkriAI2DhFKzhSOFFRwrMpFfVk1hRTUF5dUUVtRgqrFSZbFTbbFRbbVjVxT0Oh0Gvfqh11H7WVf32bH9q7LGSqXFRmWNjYpq9XHOpUt8KFf3bMnVPROIC/Nvym9diGYvoySDB5c9SFZ5Fj56H55Me5KbU25GV10G8/4C6XPUO8Z1g2s/hhap2gbcSJU1Nl5dtJ8Z6zIBiAj04fErU7glrRUG2bL6myS5cBd5e2HbF5Tu+h/f+Nn5KjSEstqkol1ALI8OeJahSSOavG213a6QUVjBzqxSdmWXsO9EOUcKKigy1TRZDJFBvrSPCSYlLoQ+yREMbBdFi1BJKITQUml1Kc+ufZYVWSsAGJwwmOcHPk9cUJy6PXXBY/x/e/ceFXWd/3H8ydyYgeEiA6KCqXhBAw0UMxHSJVO74G67qemptrNWVqtua2fLtFovHW3PeqzVo6bIsV1ra92JastL25q5nZ+3JNAyLxEqeEFuchkE5vb5/YGOO97BAQTej3O+B/jM5/v9vsePDK/vndqzDffZSZ0FI34HhtZ7vtDN2PlTGX/81/ccOWMDID4qmHnpcST1DGvlym5dEi5aU/WZhoT/3Qbyi/fxj6AgPgkKpEbTcIVwT3M0TyU8y/297kenaZmrHuxON/tPVLD7aDm78svILaigut55xb5dgo30Cg+kS4iRiCB/Isz+hAcZCDToMOq1GPVa/HUaNH5+uJTC5Va4L3x1K1xK4VYNAcblbvhvaDJoMRm0BBi0BBp0RAT5Y9TL7bqFuBUppXj34Lu8lf0Wdrcds97M9MTpTIqdhK6mDD57Hg5vauhsjmy4kV/Co6Bte1dxOVxu3t11nKVfHKG6ruEzcWS/CGbe04chPSRkXErCRUurq4JDn8H+DTiObue/Jn8+CDazy2TydOkb2pen73iae2+7F62mef+w2p1u9p2oYNdPZew+Ws7e4+WXHYow6jXEdwthUHQoA6OD6RMRRK+IQMz+1/+AqKur41e/+hUAH374IUaj7HEQor3Jr8jn1f97lf2l+wHoE9qHmYkzGRU9Er+Dn8B/5jU8kRkgYkBDyOj/ADTz51tzKLXVs+Tzw/wz+4Rno2hEHwsz0voyrFeYPBTxPAkXLaGmDH78HA5txP3jF+ToYKM5gH8HBlB5/tCHBg13d7+byf0nc1fXu9D4Nc/9zZwuN9+drGRnfhk7fypj77Gz1DpcXn3CAg3cFRPGsF4WhvYMo1+kGZ22afW01u2/hRAty+V2kZWXxV++/QuV9ZUAxFniePT2RxkbNQr9t3+D7X+CuoqGGUJvgzunNdybxxjSeoU3UUHZOVZ+lYc1+wTO8yEjNjKIR+7szkOJUR3+xE8JF83B7YLT+yD/K/jx39Sd2M0efwPbA0xsDzBxRndxiz/CFEF673Qmxk4kyuz7G7a43IqDp6vY+VMZO/PL2HO0HNslhzksgQaGxYQxPMbCXTEW+nQ2+yx9S7gQomOprK/knQPv8N7B96h1NjysMNwUzoR+E/hV99FE5v6j4cZbteUNMxjMEP9LiHsIet7d5g6ZnDh7jre3/8Q/956g3tmw19eg03BffBfSB3VjRJ/wDvkkZgkXvuCsh6Lv4MReOPY19ce+5ntVx7dGf7LPT3Wai1v+gfpARt82mgdiHuDOLnf69NDH6cpacgsqyD1RQW5BBd+drOSc3XvPRIhJz7BeYST3tjC8dzj9In0XJi4l4UKIjqmstgzrESsbDm+guLbY0z4oYhD3RN3NPTW19Mj5AEoOXpzJFAYD0iH2voYbcrWh5yFV1jr4JPck7+8p5ODpKk+7Ua8hpU8EY26PJKVvON1CTddYSvsh4aKxas9C8UEo/gGKD1Jz6lvyyw9zUOfHYYOeQwYDhwwG7JdcptQlsAsjo0dyd/Td3NnlToy6mzv3oM7hIq/Yxo/F1Rw5Y+NIUTXfn6rkTFX9ZX3N/jru7NWwZ2J4bwsDuga32GVUEi6E6Ngcbgdbj2/l/UPv823xt16vRZujSQjoRqKtkoTCHGKqSrm438IPug6CnqkQNQQi48HS+5Y/T0MpxXcnK/kw+wT/OVjMyYpar9e7hhgZ0qMTQ3p0YlB0KH0jzQQb9a1UbfORcHGBUmC3ga0YakqgpgRH9WnKzh6lpCKf4uqTlNaVUOys5YxOS6Fex3GdnjLdlf+jW4wWBkcOZkjkEIZ2GUrf0L43tHdAKYWt3kmpzU6prZ7S6npKzn89cbaWgvJzFJSfo7j68hABoPGD2C7BJHQPJbF7KAm3hdI7wtxq12RLuBBCXFB8rphtBdvYWrCVb4q+wam8D9Hq/bT00BiJqaslxnaWbk4nkS4XkU4nnZ0uzFp//CL6Q3jfhnM2LkzmLhBggYAw0N46f6iVUhw8Xc0XP5zhy0Nn+P5Uleck0P/VJdhI30gzMeGBdAs10TXURLcQI11CjIQGGAg0aNvciaLtK1wUH4L8beCyg8vOibpyttcUUO92YD8/OVx2HC47dlf9xTa3k3NuJzY/RbVGg03jh02joVZzYycxhhlC6G+Jo7+lP7GdYqmqisRW3QmHS+FwuXG43Nidbuz/832dw01NvRPb+anhexfVdQ7PcbvrCTHpiY0Mol8XM/0ig+jfJZj4qOBb6mFdEi6EEFdSba9mf8l+copzyC3JZX/Jfs85GlejVYogt5vgC5PLTaBS+J+fDG6Fv9aAXmfEX2fCX2fkLl0o/fWhoA8AvRF0potftXrQGSF2XIs87PGc3UluYQXZx86SXXCWQ6erKaqqu+58Oo0fISY9IQF6Qk16Qkx6TAYt/jotBq0Gf70Gf52m4Wddw/dJPcMY0qNTs7+nq2mVcFFdXU1SUhLbt2/3bbhY87OGW8+e92znCHJMN/ecCR1+WHQBhBtCsQREEB7UnXBzV6LN0XQP7k50UDRBhou3nT5aaiN9+f/d1DoBAgxaLGYDlkB/LGY9lkB/uoaa6N7JRFSoie6dAggJ0N/yabampoZu3RoeInbq1CkJF0KIK3IrN0U1RRyrPMaxqmMcrzpO8blizpw7Q/G5YmwOW5OWG+Vw8OGpM9fu1OtueOTvTVr+zaqsdZBfUsNPJdUUnq2lqKKWoqp6iqpqKamyY3fd2Mbmpcz+WnbMvsdz92NfCwwMvObfn1YJF0VFRYwcObKlVyuEEEIIH7jekYdWCRdut9vzEKtbfctbCCGEEN5uyT0XQgghhGi/muc2kEIIIYTosCRcCCGEEMKnJFwIIYQQwqckXAghhBDCpyRcCCGEEMKnJFwIIYQQwqckXAghhBDCpyRcCCGEEMKn2k24qKio4IUXXmDw4MEkJSUxZ84campqrtl/4cKFjB07lkGDBjFq1Chef/11qqurW7Dq9uO9994jLS2NgQMHMmHCBPbv33/N/ps3b2bcuHEMHDiQ9PR0tm/f3kKVdgyNGY8NGzYwZcoUhg4dytChQ3niiSeuO36icRr7+3HBxo0biY2N5bnnnmvmCjuWxo5HVVUV8+fPJyUlhfj4eMaOHSufWdej2ompU6eq8ePHq9zcXPXNN9+oe++9V82aNeuq/Q8fPqymT5+utm7dqo4fP6527NihxowZo2bMmNGCVbcPGzduVHFxccpqtaoff/xRvfLKKyopKUmVlpZesX92drYaMGCAysjIUHl5eerNN99UcXFx6vDhwy1cefvU2PGYNWuWevfdd9UPP/yg8vLy1OzZs9WQIUNUUVFRC1fePjV2PC4oLCxUqampasqUKerZZ59toWrbv8aOR319vfrlL3+pnnrqKbV3715VWFiodu/erQ4ePNjClbct7SJc5OXlqX79+qn9+/d72rZv365iY2Mb9QG5adMmFRcXpxwOR3OU2W49/PDDav78+Z6fXS6XSklJUatXr75i/9/97nfq6aef9mqbMGGCevXVV5u1zo6iseNxKafTqRITE9VHH33UTBV2LE0ZD6fTqSZNmqQ2bNigXnrpJQkXPtTY8fj73/+u7rnnHmW321uqxHahXRwWycnJITg4mIEDB3rakpOT0Wg0jdq9a7PZMJvN6HS65iizXbLb7Rw4cIDk5GRPm0ajITk5mZycnCvOk5uby/Dhw73aUlJSyM3Nbc5SO4SmjMelamtrcTqdhISENFeZHUZTx2PFihVYLBYmTJjQEmV2GE0Zjy+//JKEhAQWLFhAcnIyDz74IG+//TYul6ulym6T2kW4KC0tJSwszKtNp9MREhJCSUnJDS2jvLyclStXMmnSpOYosd06e/YsLpcLi8Xi1W6xWCgtLb3iPKWlpYSHh99wf3HjmjIel1qyZAmdO3f2+gAWTdOU8di7dy9Wq5WFCxe2RIkdSlPGo7CwkM8//xyXy8WaNWt47rnnWLduHatWrWqJktusW3oTfcmSJWRkZFyzz6ZNm256PTabjWnTptG7d2+mT59+08sToq1as2YNmzZt4m9/+xv+/v6tXU6HY7PZePHFF1m4cOFlG0yidSilsFgsLFy4EK1WS3x8PGfOnCEzM1P+XlzDLR0ufvOb3/DQQw9ds0/37t0JDw+nvLzcq93pdFJZWUlERMQ157fZbDz55JMEBgayYsUK9Hr9TdfdkXTq1AmtVktZWZlXe1lZ2WV7Jy4IDw+/bCvhWv3FjWvKeFyQmZnJmjVrWLduHf3792/OMjuMxo5HYWEhJ0+e5Nlnn/W0ud1uAG6//Xa2bNnCbbfd1rxFt2NN+f2IiIhAp9Oh1Wo9bTExMZSUlGC32zEYDM1ac1t1Sx8WCQsLo3fv3tecDAYDiYmJVFVV8f3333vm3bVrF263m0GDBl11+TabjalTp6LX61m1apVsqTWBwWAgLi6OnTt3etrcbjc7d+4kMTHxivMkJCSwa9cur7YdO3aQkJDQnKV2CE0ZD4CMjAxWrlzJ2rVrvc5dEjenseMRExPDp59+yscff+yZ0tLSGDZsGB9//DFdunRpyfLbnab8fgwePJiCggJPyAM4duwYEREREiyupbXPKPWVqVOnql/84hdq3759au/evWrMmDFel6IWFRWpsWPHqn379imllKqurlYTJkxQDz74oDp+/LgqLi72TE6ns7XeRpu0ceNGFR8fr7KyslReXp569dVXVVJSkiopKVFKKfWHP/xBLVmyxNM/Oztb3X777SozM1Pl5eWpZcuWyaWoPtTY8Vi9erWKi4tTW7Zs8fo9sNlsrfUW2pXGjsel5GoR32rseJw6dUolJiaqBQsWqPz8fLVt2zY1fPhwtXLlytZ6C23CLX1YpDGWLFnCwoUL+fWvf41Go2HMmDG88sorntcdDgdHjx6ltrYWgAMHDrBv3z4A7r33Xq9lbd26lejo6JYrvo27//77KS8vZ9myZZSUlDBgwADWrl3r2c14+vRpNJqLO8kGDx7MkiVLeOutt1i6dCk9e/ZkxYoV9OvXr7XeQrvS2PH44IMPcDgczJw502s506dPZ8aMGS1ae3vU2PEQzaux49G1a1cyMzNZvHgx48ePJzIykscff5ynnnqqtd5Cm+CnlFKtXYQQQggh2g+Jy0IIIYTwKQkXQgghhPApCRdCCCGE8CkJF0IIIYTwKQkXQgghhPApCRdCCCGE8CkJF0IIIYTwKQkXQgghhPApCRdCiBaTlZVFUlJSa5chhGhmcodOIdqInJwcpkyZQmpqKmvWrAFg9uzZfPTRR1edJyoqii+//JLHHnuMPXv2XPb6pEmTWLBgwRXnvdqyU1JSyMzMvG69aWlpPP744zzxxBOetrq6OmpqarBYLNed/2ZkZWWxaNEi9u7d26zrEUJcWbt5togQ7Z3VauXRRx/FarVy5swZIiMjmTt3Li+88IKnT0pKCosXLyY1NRXA6zHREydOvOz5ISaT6ZrrTE1NZfHixV5tN/MkSKPRiNFobPL8Qoi2QQ6LCNEG1NTUsGnTJiZPnsyoUaM8exSCgoKIiIjwTADBwcGen8PCwjzLMBqNXn0jIiIwm83XXK/BYLhsnpCQEACUUixfvpxRo0YRHx9PSkoKr7/+OgCPPfYYJ0+eZPHixcTGxhIbGwtcflhk+fLl/PznP8dqtTJq1CgSExOZN28eLpeLjIwMRowYwfDhw1m1apVXXevWrSM9PZ2EhARGjhzJvHnzqKmpAWD37t28/PLLVFdXe9a9fPlyAOx2O3/6059ITU0lISGBCRMmsHv37iaPixDiymTPhRBtwObNm4mJiSEmJobx48ezaNEipk2bhp+fX6vV9Pnnn/POO++wdOlS+vbtS2lpKYcOHQIuhoaJEycyceLEay6noKCA//73v6xdu5aCggJmzpxJYWEhvXr1Yv369eTk5DBnzhySk5O54447APDz82Pu3LlER0dTWFjI/Pnz+fOf/8y8efNITExkzpw5LFu2jC1btgAQEBAAwIIFC8jLy+PNN9+kc+fOfPHFFzz55JN8+umn9OzZs/n+sYToYCRcCNEGWK1Wxo8fDzQcqqiurmbPnj0MGzbshpfx/vvvY7Vavdrmz5/vWe6VfPXVVyQmJnq1TZs2jWeeeYbTp08THh5OcnIyer2ebt26MWjQIABCQ0PRarUEBgZ69qhcjVKKRYsWYTab6dOnD8OGDePo0aNkZGSg0WiIiYkhIyOD3bt3e8LF/57HER0dzfPPP88f//hH5s2bh8FgICgoCD8/P691nzp1iqysLLZt20ZkZCQAU6dO5euvvyYrK4tZs2Zd/x9RCHFDJFwIcYvLz8/nu+++Y8WKFQDodDruv/9+rFZro8JFeno6zzzzjFfb9U6sHDZsGPPmzfNqu3BYZNy4cfz1r39l9OjRpKamMnLkSH72s5+h0zXuYyUqKsrr8Ex4eDharRaNRuPVVlZW5vl5x44drF69mvz8fGw2Gy6Xi/r6empra696HsmRI0dwuVyMGzfOq91utxMaGtqomoUQ1ybhQohbnNVqxel0ek7ShIatfYPBwGuvvUZQUNANLcdsNtOjR49GrdtkMl11nq5du7JlyxZ27NjBjh07mD9/PpmZmaxfvx69Xn/D67g0jPj5+V2xze12A3DixAmmTZvG5MmT+f3vf09ISAjZ2dnMnTsXh8Nx1XBx7tw5tFotH374odeJrnDxsIkQwjckXAhxC3M6nXzyySfMnj2bESNGeL3229/+ls8++4zJkye3UnUNJ4mmpaWRlpbGlClTuO+++zhy5AhxcXHo9XpPIPClAwcOoJRi9uzZnr0bmzdv9uqj1+txuVxebQMGDMDlclFeXi732hCimUm4EOIW9tVXX1FZWcnDDz982R6KMWPGYLVabzhc1NXVUVJS4tVmMBg8hzmuxG63XzaPVqslLCyMrKwsXC4Xd9xxByaTiX/9618YjUa6desGNBzu+Oabb3jggQfQ6/VeV67cjB49euBwOFi/fj1paWlkZ2fzwQcfePWJiori3Llz7Ny5k9jYWEwmE7169SI9PZ0XX3yR2bNnM2DAAM6ePevpM2rUKJ/UJ4SQcCHELc1qtZKcnHzFQx9jx45l7dq1HDp0iP79+193WRs2bGDDhg1ebde7IdbXX39NSkqKV1uvXr3YsmULwcHBrFmzhjfeeAO3202/fv14++236dSpEwAzZ87ktddeY/To0djtdg4fPnwjb/m6+vfvz8svv0xGRgZLly4lKSmJWbNm8dJLL3n6DB48mEceeYTnn3+eiooKpk+fzowZM1i8eDGrVq3ijTfeoLi4mNDQUBISEiRYCOFjcodOIYQQQviU3ERLCCGEED4l4UIIIYQQPiXhQgghhBA+JeFCCCGEED4l4UIIIYQQPiXhQgghhBA+JeFCCCGEED4l4UIIIYQQPiXhQgghhBA+JeFCCCGEED4l4UIIIYQQPvX/qgaQf1sys/kAAAAASUVORK5CYII=",
+ "text/plain": [
+ "