-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcount.py
56 lines (46 loc) · 1.93 KB
/
count.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import tensorflow as tf
import sys
import os
# GPU를 사용하도록 tensorflow에 대한 제한을 구성
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.9
tf.keras.backend.set_session(tf.Session(config=config));
# change this as you see fit
file_path = sys.argv[1]
#이미지 불러오기
file_list = os.listdir(file_path)
# empty code
image_list = []
count_score = []
for i in file_list:
image_path = file_path + i
# Read in the image_data
image_data = tf.gfile.FastGFile(image_path, 'rb').read()
image_list.append(i)
# Loads label file, strips off carriage return
label_lines = [line.rstrip() for line
in tf.gfile.GFile("retrained_labels_count.txt")]
# Unpersists graph from file
with tf.gfile.FastGFile("retrained_graph_count.pb", 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
tensor_name_list = [tensor.name for tensor in tf.get_default_graph().as_graph_def().node]
for tensor_name in tensor_name_list:
print(tensor_name, '\n')
with tf.Session() as sess:
# Feed the image_data as input to the graph and get first prediction
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
predictions = sess.run(softmax_tensor, \
{'DecodeJpeg/contents:0': image_data})
# Sort to show labels of first prediction in order of confidence
top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]
for node_id in top_k:
human_string = label_lines[node_id]
score = predictions[0][node_id]
count_score.append((human_string, score))
for i in range(len(file_list)):
print('---',image_list[i],'---',end='\n')
print('---EXPECTED QUANTITY---',end='\n')
for j in range(6):
print('%s (EXPECTED QUANTITY = %.5f)' % (count_score[i*6+j][0], count_score[i*6+j][1]), end='\n')