-
Notifications
You must be signed in to change notification settings - Fork 31
/
evaluate_dtu_mesh.py
executable file
·216 lines (168 loc) · 7.3 KB
/
evaluate_dtu_mesh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# The evalution code is fork from GOF https://github.com/autonomousvision/gaussian-opacity-fields/blob/main/evaluate_dtu_mesh.py
import numpy as np
import torch
import torch.nn.functional as F
from scene import Scene
import cv2
import os
import random
from os import makedirs, path
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams, get_combined_args
from gaussian_renderer import GaussianModel
import trimesh
from skimage.morphology import binary_dilation, disk
def best_fit_transform(A, B):
'''
Calculates the least-squares best-fit transform that maps corresponding points A to B in m spatial dimensions
Input:
A: Nxm numpy array of corresponding points
B: Nxm numpy array of corresponding points
Returns:
T: (m+1)x(m+1) homogeneous transformation matrix that maps A on to B
R: mxm rotation matrix
t: mx1 translation vector
'''
assert A.shape == B.shape
# get number of dimensions
m = A.shape[1]
# translate points to their centroids
centroid_A = np.mean(A, axis=0)
centroid_B = np.mean(B, axis=0)
AA = A - centroid_A
BB = B - centroid_B
# rotation matrix
H = np.dot(AA.T, BB)
U, S, Vt = np.linalg.svd(H)
R = np.dot(Vt.T, U.T)
# special reflection case
if np.linalg.det(R) < 0:
Vt[m-1,:] *= -1
R = np.dot(Vt.T, U.T)
# translation
t = centroid_B.T - np.dot(R,centroid_A.T)
# homogeneous transformation
T = np.identity(m+1)
T[:m, :m] = R
T[:m, m] = t
return T, R, t
def load_dtu_camera(DTU):
# Load projection matrix from file.
camtoworlds = []
for i in range(1, 64+1):
fname = path.join(DTU, f'Calibration/cal18/pos_{i:03d}.txt')
projection = np.loadtxt(fname, dtype=np.float32)
# Decompose projection matrix into pose and camera matrix.
camera_mat, rot_mat, t = cv2.decomposeProjectionMatrix(projection)[:3]
camera_mat = camera_mat / camera_mat[2, 2]
pose = np.eye(4, dtype=np.float32)
pose[:3, :3] = rot_mat.transpose()
pose[:3, 3] = (t[:3] / t[3])[:, 0]
pose = pose[:3]
camtoworlds.append(pose)
return camtoworlds
import math
def fov2focal(fov, pixels):
return pixels / (2 * math.tan(fov / 2))
def cull_mesh(cameras, mesh):
vertices = mesh.vertices
# project and filter
vertices = torch.from_numpy(vertices).cuda()
vertices = torch.cat((vertices, torch.ones_like(vertices[:, :1])), dim=-1)
vertices = vertices.permute(1, 0)
vertices = vertices.float()
sampled_masks = []
for camera in cameras:
c2w = (camera.world_view_transform.T).inverse()
w2c = torch.inverse(c2w).cuda()
mask = camera.gt_mask
fx = fov2focal(camera.FoVx, camera.image_width)
fy = fov2focal(camera.FoVy, camera.image_height)
intrinsic = torch.eye(4)
intrinsic[0, 0] = fx
intrinsic[1, 1] = fy
intrinsic[0, 2] = camera.image_width / 2.
intrinsic[1, 2] = camera.image_height / 2.
intrinsic = intrinsic.cuda()
W, H = camera.image_width, camera.image_height
with torch.no_grad():
# transform and project
cam_points = intrinsic @ w2c @ vertices
pix_coords = cam_points[:2, :] / (cam_points[2, :].unsqueeze(0) + 1e-6)
pix_coords = pix_coords.permute(1, 0)
pix_coords[..., 0] /= W - 1
pix_coords[..., 1] /= H - 1
pix_coords = (pix_coords - 0.5) * 2
valid = ((pix_coords > -1. ) & (pix_coords < 1.)).all(dim=-1).float()
# dialate mask similar to unisurf
maski = mask[0, :, :].cpu().numpy().astype(np.float32) / 256.
# maski = torch.from_numpy(binary_dilation(maski, disk(14))).float()[None, None].cuda()
maski = torch.from_numpy(binary_dilation(maski, disk(6))).float()[None, None].cuda()
sampled_mask = F.grid_sample(maski, pix_coords[None, None], mode='nearest', padding_mode='zeros', align_corners=True)[0, -1, 0]
sampled_mask = sampled_mask + (1. - valid)
sampled_masks.append(sampled_mask)
sampled_masks = torch.stack(sampled_masks, -1)
# filter
mask = (sampled_masks > 0.).all(dim=-1).cpu().numpy()
face_mask = mask[mesh.faces].all(axis=1)
mesh.update_vertices(mask)
mesh.update_faces(face_mask)
return mesh
def evaluate_mesh(dataset : ModelParams, iteration : int, DTU_PATH : str):
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gaussians, load_iteration=iteration, shuffle=False)
train_cameras = scene.getTrainCameras()
test_cameras = scene.getTestCameras()
dtu_cameras = load_dtu_camera(args.DTU)
gt_points = np.array([cam[:, 3] for cam in dtu_cameras])
points = []
for cam in train_cameras:
c2w = (cam.world_view_transform.T).inverse()
points.append(c2w[:3, 3].cpu().numpy())
points = np.array(points)
gt_points = gt_points[:points.shape[0]]
# align the scale of two point clouds
scale_points = np.linalg.norm(points - points.mean(axis=0), axis=1).mean()
scale_gt_points = np.linalg.norm(gt_points - gt_points.mean(axis=0), axis=1).mean()
points = points * scale_gt_points / scale_points
_, r, t = best_fit_transform(points, gt_points)
# load mesh
# mesh_file = os.path.join(dataset.model_path, "test/ours_{}".format(iteration), mesh_dir, filename)
mesh_file = os.path.join(dataset.model_path, "recon.ply")
print("load")
mesh = trimesh.load(mesh_file)
print("cull")
mesh = cull_mesh(train_cameras, mesh)
culled_mesh_file = os.path.join(dataset.model_path, "recon_culled.ply")
mesh.export(culled_mesh_file)
# align the mesh
mesh.vertices = mesh.vertices * scale_gt_points / scale_points
mesh.vertices = mesh.vertices @ r.T + t
aligned_mesh_file = os.path.join(dataset.model_path, "recon_aligned.ply")
mesh.export(aligned_mesh_file)
# evaluate
out_dir = os.path.join(dataset.model_path, "vis")
os.makedirs(out_dir,exist_ok=True)
# scan = dataset.model_path.split("/")[-1][4:]
scan = int(dataset.source_path.split("/")[-1][4:])
cmd = f"python dtu_eval/eval.py --data {aligned_mesh_file} --scan {scan} --mode mesh --dataset_dir {DTU_PATH} --vis_out_dir {out_dir}"
print(cmd)
os.system(cmd)
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Testing script parameters")
model = ModelParams(parser, sentinel=True)
pipeline = PipelineParams(parser)
parser.add_argument("--iteration", default=30_000, type=int)
parser.add_argument("--skip_train", action="store_true")
parser.add_argument("--skip_test", action="store_true")
parser.add_argument("--quiet", action="store_true")
parser.add_argument('--scan_id', type=str, help='scan id of the input mesh')
parser.add_argument('--DTU', type=str, default='dtu_eval/Offical_DTU_Dataset', help='path to the GT DTU point clouds')
args = get_combined_args(parser)
print("evaluating " + args.model_path)
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
torch.cuda.set_device(torch.device("cuda:0"))
evaluate_mesh(model.extract(args), args.iteration, args.DTU)