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Abstract—Soft robots enable safe and robust operations in un-
structured environments. However, the nonlinearities of their con-
tinuum structure complicate the accomplishment of classic robotic
tasks, such as pick and place. In this letter, we propose the R-Soft
Inverted Pendulum, a Soft Inverted Pendulum (SIP) actuated only
by a revolute joint at the base. The objective is to exploit the snap
effect to execute pick and place task. We model the proposed sys-
tem with two approaches: Curvature Parametrization and Strain
Parametrization. The former is particularly simple and easy to
implement in the classic dynamics of a rigid manipulator, although
it suffers from numerical issues. The latter is more complex but
guarantees numerical robustness. Additionally, we analyze the
equilibria of the system and its structural properties. Furthermore,
we propose a control law based on feedback linearization. Finally,
we validate the proposed system through simulations.

Index Terms—Modeling, control, and learning for soft robots,
underactuated robots.

I. INTRODUCTION

SOFT robots [1] represent a paradigm shift in robotic systems
due to their inherent characteristics of continuous deforma-

bility. The configuration space of soft robots is theoretically
infinite [2], meaning the robot tip can reach every point in its
workspace with an infinite number of configurations. Soft robots
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Fig. 1. Scheme of R-Soft Inverted Pendulum (R-SIP), the inherently under-
actuated soft robotic system whose dynamics and control we characterize in
depth in this work.

can adapt their shape to nonlinear paths and access difficult-to-
reach remote environments [3]. These capabilities empower soft
robots to accomplish delicate tasks in unstructured environments
and to investigate novel manipulation possibilities. Moreover,
the flexibility of their materials makes them well-suited for
applications requiring safer physical human–robot interaction.

These properties make modeling and controlling very com-
plex, due to the necessity of managing all the strain modes
and the infinite Degrees of Freedom (DoF). As a consequence,
achieving easy and well-known robotic tasks, such as pick and
place, becomes very challenging.

In the perspective of accomplishing the aforementioned task,
we propose a new template model that both exploits the nonlinear
behavior of soft structures and eases the integration of soft robots
with rigid manipulators (e.g., as an end-effector). In particular,
the proposed system is an extension of the Soft Inverted Pen-
dulum (SIP) [2], in which the soft segment is actuated only by
a revolute joint at the base. SIP has been previously shown to
exhibit the snap effect, i.e., a rapid discharge of stored energy,
manifesting a catapult-like trajectory [2], [4]. Therefore, the
main idea is to exploit the snap effect to accomplish the pick
and place task. The major contribution of this work is the novel
template model of R-SIP, accompanied by an analysis of equi-
libria and structural properties, i.e., stability and controllability.
This model is derived using two discretization methods, i.e., Cur-
vature Parametrization [5] and Strain Parametrization [6], [7],
which are then compared based on (i) numerical robustness, (ii)
computational efficiency, and (iii) accuracy. It is worth stressing
here that these two strategies differ only in the formalism used
and - consequently - in the way in which the same derivations are
carried on. In essence, when SP is restricted to the polynomial
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curvature case, these two procedures are two ways to look at
exactly the same model.

To our knowledge, this is the first time R-SIP has been
modeled with Strain parameterization. Furthermore, a relation
between the two approaches is provided. Additionally, we pro-
pose a model-based controller and a novel strategy to accomplish
the pick-and-place task by exploiting the snap effect. Finally, we
validate our model, controller, and strategy through simulations.

II. RELATED WORKS

There is no golden rule to model Continuum Soft Robots
(CSRs). The infinite DoF of a continuum mechanism launch a
challenge to the young soft robotics community, in both theo-
retical and computational terms. In perspective to control and
implementation purposes, the researchers propose many model
techniques to predict the nonlinear behavior of soft robots, bal-
ancing accuracy and computational efficiency. As well explained
in [8], we can classify the available models into four classes: (i)
Continuum Mechanics models, (ii) Geometrical models, (iii)
Discrete material models, and (iv) Surrogate models.

The main concept of Geometrical models is to assume that
the deformed shape of the soft body can be described by a
specific curve. One of the most famous models in this category
is surely Piecewise Constant Curvature (PCC) [9]. The idea is
to discretize the length of the elastic rod, assuming that each
piece is a circumference arc. Extending this concept, Della
Santina et al. [5], [10] propose to assume that each piece can
be parametrized by a polynomial curvature, which means that
each piece is a Generalized Cornu Spiral [11], i.e., a curve with
a polynomial curvature. We call these approaches Curvature
Parametrization (CP).

An application of this approach is the Soft Inverted Pendulum
(SIP) [2], a soft segment which is applied pure torque on the tip.
In [2], Della Santina assumes that the curvature is an affine
function, reducing the dimension of the state space. Despite the
approximation, this system shows some interesting phenomena,
such as the blue-sky catastrophe [12, Sec. 2.3]. In particular, it
occurs when varying the constant input torque, one or more equi-
libria disappear, after crossing a critical value. This phenomenon
is strictly related to the snap effect, as shown in [2] and [4].
Thanks to these properties, the SIP model received a deep
study on the equilibria and stability [13] and an experimental
validation [14]. A different version of the SIP is proposed in [15],
considering a SIP rigidly attached to a passive revolute joint.
This version is very similar to the R-SIP, but different from the
actuation source.

In another related work [16], the R-SIP is controlled to per-
form the swing-up task (i.e., reaching straight configuration),
with a linear output feedback controller. The control algorithm
is based on a discrete model of an Euler-Bernoulli beam [16].
Differently from CP, this discretization technique requires a
large number of DoFs to model accurately soft robots.

The CP permits to compute the Equation of Motion with a
classical Lagrangian approach like rigid robots [17]. From a
control point of view, this is a great advantage, allowing the use
of standard controllers like Feedback Linearization [18]. How-
ever, when the curvature goes to zero (straight configuration),
the model suffers from numerical issues. Furthermore, the CP
gives us only a 2D model of the soft segment and considers only
bending as strain mode.

Researchers propose models based on the Cosserat Rod
Theory (CRT) to avoid numerical problems and consider all
strain modes. In [19], Renda et al. discuss the application of
CRT to soft robotics, and its formulation via the Lie Group
on SE(3). Grazioso et al. [3] proposed a CRT-based model
with a new discretization technique inspired by the Finite El-
ement Method (FEM). This method assumes that each soft
segment is a helix with constant curvature and torsion. Renda
et al. [20] proposed the Piecewise Constant Strain (PCS) model.
This approach aims to parametrize the rod’s kinematics with a
strain twist, considered constant along the rod. This concept is
extended by the works [6], [7], that introduce the Geometric
Variable-Strain (GVS). Similar to Polynomial Curvature, the
strain twist is generated by a truncated functional basis of
space-dependent vectors [8]. Using this method, the user can
choose the order of truncation, finding the optimal trade-off
in terms of accuracy and computational efficiency. For this
reason, this is probably the most accurate and versatile ap-
proach. We call these methods Strain Parametrization (SP).
GVS method is implemented in a MATLAB toolbox called
SoRoSim [21].

III. MODELING R-SOFT INVERTED PENDULUM

The R-Soft Inverted Pendulum is a soft segment actuated
only by a revolute joint at the base. In Fig. 1, a representa-
tive scheme of R-SIP is shown. This figure also depicts the
Systems of Reference (SoR) necessary to define the pose of
R-SIP. In particular, let be {I} = {OI ; xI ,yI , zI} the inertial
frame and {S0} = {O0; x0,y0, z0}, a frame attached to soft
segment’s base. With these SoRs, the joint angle θr(t) can
be defined as the counterclockwise angle between xI and x0

axis. The origins of inertial {I} and fixed-base {S0} frame
are coincident (OI −O0 = 0). The soft segment’s length L
can be parameterized by the normalized curvilinear abscissa
s ∈ [0, 1]. For each point s̄, we can define a SoR {Ss}, de-
scribed by an homogeneous transformation in SE(3) group.
In the case of s̄ = 1, we define the tip-fixed frame as {S1} =
{O1; x1, y1, z1}. In the following, two model formulations will
be proposed, following the two methodologies in the works [2],
[5] and [6], [7], for CP and SP, respectively. Note that these two
formulations represent the same dynamical system - modulo
approximations.1

A. Curvature Parametrization

The Curvature Parametrization (CP) describes the pose of a
single soft segment by its curvature κ(s, t) : [0, 1]× R → R.
This statement is valid by making the following assumptions:

1) The soft segment can be considered as a Rod (L >>
D) [5], [8], [19], [22], where D is the diameter of the
soft segment,

2) Elongation, Shear and Torsion strain modes are neglected,
3) The backbone curve associated with the system lives in

the 2D plane. This means that we have to consider only
the bending around the z axis.

1More specifically, we include Magnus expansion as a way of dealing with
integrals arising from the derivations in the SP case, which in turn will result in
some approximation errors in the end. In principle, this approximation could be
used also in the CP case.
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Under these assumptions, the pose of the soft segment is
completely described by the curvature of the backbone curve.
Assuming the curvature as an analytic function, it can be ex-
pressed as an infinite sum of monomials [5], i.e.,

κ(s, t) =

∞∑
i=0

θi(t)s
i = θ0(t) + θ1(t)s+ θ2(t)s

2 + . . . (1)

In (1), the infinite DoF of a continuum soft segment are taken
into account.

1) Forward Kinematics: The 2D pose of a generic {Ss},
w.r.t. {S0}, is completely described by its curvature κ(s, t), as
can be demonstrated by (2) and (3).

α0
s(t) =

∫ s

0

κ(v, t) dv =

∞∑
i=0

θi(t)
si+1

i+ 1
, (2)

[
xs(t)

ys(t)

]
=

∫ s

0

[− sin(α0
v(t))

+ cos(α0
v(t))

]
dv . (3)

To avoid infinite dimension state space, the curvature can be
approximated as an affine function in s [2], i.e.,

κ(s, t) � θ0(t) + θ1(t)s . (4)

With (4), the 2D pose of a single segment can be expressed
in closed-form equations. In fact, with α0

s = θ0 s+ θ1
s2

2 , 2D

position can be written as xs(
θ2
0

2θ1
, θ0+sθ1√

πθ1
) and ys(

θ2
0

2θ1
, θ0+sθ1√

πθ1
),

where the complete expressions can be found in [2].
Despite the 2D position being well-defined for (θ0, θ1) → 0

[2], the computation of Forward Kinematics suffers from nu-
merical issues in the neighborhood of the straight configuration
(i.e., θ0 = θ1 = 0).

A s-fixed frame {Ss} pose, w.r.t. {S0}, can be described by
T 0

s ∈ SE(3), defined as

T 0
s =

[
Rz

(
α0
s

)
ps

0T 1

]
, (5)

where ps =
(
xs ys 0

)�
and Rz(·) ∈ SO(3) is the elemen-

tary rotation matrix around z-axis. In addition, the pose of
{S0} can be written w.r.t. {I} through T I

0(θr) ∈ SE(3), that
represents a pure rotation around z-axis. Similarly to length,
thickness D can be parameterized by d ∈ [− 1

2 ,
1
2 ]. Finally, a

point of the soft segment, at length s and thickness d, can be
expressed in Inertial Frame as:

pI
sd = Rz(θr)ps +Rz(θr + α0

s)
[
dD 0 0

]�
. (6)

Equation (6) is the Forward Kinematics of R-SIP with CP.

2) Differential Kinematics: Let q =
[
θr θ0 θ1

]� ∈ R3

be the generalized joint vector. From (6), Differential Kinematics
can be easily computed. The Jacobian matrix JI

sd maps the joint
velocity vector q̇ in the linear velocity ṗI

sd:

ṗI
sd = JI

sd(q) q̇ . (7)

The Jacobian matrix can be computed by derivation (JI
sd(q) =

∇q(x
I
sd, y

I
sd)), obtaining such as written below,

JI
sd(q) =

[(
Rz(

π
2 + θr)

)
psd Rz(θr)Jsd(θ0, θ1)

]
, (8)

where Jsd is the Jacobian derived in [2].

3) Dynamics: Applying the classical Lagrangian approach
for rigid manipulators [17], it is possible to derive dynamics.
The Equations of Motion (EoM) can be finally written as:

M(q)q̈ +C(q, q̇)q̇ +G(q) +K (q) +D (q, q̇) = S�τ ,
(9)

where S =
[
1 0 0

]
, M(q) ∈ R3×3 is the inertia matrix,

C(q, q̇) ∈ R3×3 is the Coriolis matrix,G(q) ∈ R3 is the gravity
vector, K : R3 → R3 and D : R3 × R3 → R3 are the stiffness
and the damping contributions. Finally, τ ∈ R is the torque input
on the revolute joint.

The inertia matrix M(q) can be computed by kinetic energy,
resulting in

M(q) =

∫ 1

0

∫ 1
2

− 1
2

ρ(s, d) JI
sd

�
JI

sd dd ds , (10)

where ρ(s, d) is the density of soft segment.M(q) can rewritten
in block matrices

M(q) =

[
M11(θ0, θ1) M12(θ0, θ1)

M�
12(θ0, θ1) M22(θ0, θ1)

]
, (11)

where M22 is the inertia matrix of SIP, found in [2]. It is
important to highlight that the inertia matrix is independent of θr
and depends only on the soft segment’s configuration (θ0, θ1).
Furthermore, in the case of uniform density (ρ(s, d) = ρ̄) or
mass concentrated on the tip (ρ(s, d) = ρ̄ δ(s− 1)), this integral
has an analytic solution [2].

The gravity vectorG(q) is defined as gradient of gravitational
potential energy (G(q) = ∇q U(q)), as written below.

U(q) =
∫ 1

0

∫ 1
2

− 1
2

ρg (sφ+θrxsd + cφ+θrysd) dd ds (12)

In (12), φ is the inclination of the gravitation field w.r.t the frame
{I}. In our case, we assume that there is no relative inclination
(φ = 0).

The Coriolis matrix C(q, q̇) is computed using classical
derivation for rigid kinematic chains [17].

Under the assumption of perfectly viscoelastic material [22],
the stiffness and damping contributions can be supposed linear,
such as K(q) = Kq and D(q, q̇) = Dq̇. In particular, K ∈
R3×3 and D ∈ R3×3 are constant matrices, defined as

K = diag (kr, kH) , D = diag (βr, βH) , (13)

where H ∈ R2×2 is the Hankel matrix. k, β are the stiffness and
damping coefficients of the soft segments, meanwhile kr, and βr
are the stiffness and damping coefficients of the revolute joint.

Finally, the general input field can be computed as the sum
of two contributions. The former corresponds to the active
torque applied by the revolute joint. The latter is related to the
soft actuators embedded in the soft segments (e.g., pneumatic
actuators), modeled as pure torques.

If na is the total number of actuators and sa,j is the point at
which the j-th soft actuator applies the active torque, the general
input field can be computed as

S�τ︸︷︷︸
Rev. Joint

+

na∑
j=1

AR (sa,j) τj︸ ︷︷ ︸
j-th Soft Actuator

, AR (sa,j) =

[
1

A (sa,j)

]
, (14)

where τj is the magnitude of the j-th soft actuator (e.g., pressure,

tension),A(sa) = ( s
i+1
a
i+1 )

n−1
i=0 is the input field derived in [2], and
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n is the number of coefficients of the polynomial curvature. The
matrix AR(sa) in (14) is the transpose of orientation Jacobian,
such as (θ̇r + α̇0

s) = A�
R(s) q̇. In our case, there are no em-

bedded soft actuators, resulting in an input field with only the
revolute joint contribution, as already shown in (9).

B. Strain Parametrization

Strain Parametrization (SP) is based on Cosserat Rod Theory
(CRT) [22], which describes the dynamics of a hyperelastic rod
with a set of Partial Differential Equations (PDEs). To solve
kinematics, this formulation uses Lie Algebra, a mathematical
tool well known in classical robotics literature [23]. SP describes
the 3D pose of a rod through strain twist ξ(X, t) ∈ R6, defined
as

ξ(X, t) =
(
g−1 g′)∨ , ξ(X, t) =

[
ξ�κ ξ�σ

]�
, (15)

where X = sL is the material abscissa and g(X, t) ∈ SE(3)
describes the configuration of a cross-section s respect to {S0}.
The strain field can be considered as generated by a finite
functional basis of strain modes [6], [7]

ξ(X, t) = Bξ(X) qξ(t) + ξ∗ , (16)

where Bξ ∈ R6×n is a matrix function whose columns form the
basis of the strain field, qξ ∈ Rn is the vector of coordinates
in that basis, and ξ∗ ∈ R6 is the reference strain. Following the
analogy with polynomial curvature [5], Bξ is usually supposed
polynomial. To have a model comparable with the one obtained
previously (9), here we assume no elongation, torsion, or shear
modes. Under these assumptions, we can write the strain field
of R-SIP as:

ξ =

[
05×1 05×1

1 X

] [
q0
q1

]
+

[
1

05×1

]
=

⎡
⎣ 1

04×1

q0 + q1X

⎤
⎦ . (17)

In (17), we set a first-order polynomial to keep the analogy with
the affine curvature of SIP.

1) Forward Kinematics: It is possible to compute the For-
ward Kinematics of R-SIP as a product of exponentials

gI(X, t) = expSE(3)

(
ξ̂R θr

)
expSE(3)

(
Ω̂(X, t)

)
, (18)

where Ω̂(X, t) ∈ se(3) is the Magnus Expansion [24] of ξ(X)
at the pointX and ξR ∈ R6 is the twist associated to the revolute
joint, such that

expSE(3)

(
ξ̂R θr

)
= T I

0(θr) . (19)

Defined q =
[
θr q�

ξ

]�
∈ R3 as generalized joint variables

vector, (18) can be considered the Forward Kinematics of R-SIP
with SP. It is worth highlighting that (18) does not suffer from
numerical issues in the case of qξ → 0, instead of CP.

2) Differential Kinematics: Let ηr(X) ∈ R6 be the relative
velocity twist associated with the soft segment, defined as

η̂r = g−1ġ . (20)

Strain and velocity twist are related by the equality of mixed
partial derivatives

ηr ′ = ξ̇ − adξ η
r . (21)

Integrating (21), it is possible to express the relative velocity
twist in the function of q̇ξ.

ηr(X, t) =

(
Ad−1

g

∫ X

0

AdgBξ dζ

)
q̇ξ (22)

The absolute velocity twist, expressed in the local frame can be
computed as

η(X, t) = Ad−1
g ξR θ̇r + ηr(X, t) . (23)

Finally, we can obtain the Soft Geometric Jacobian as:

η = Ad−1
g

[
ξR

∫X

0 AdgBξ dζ
] [ θ̇r

q̇ξ

]
= J(q)q̇ . (24)

3) Dynamics: Dynamics equations of R-SIP can be com-
puted using D’Alembert’s principle:

M(q)q̈ +C(q, q̇)q̇ +G(q) +Kq +Dq̇ = S�τ . (25)

Similarly to (9), the stiffness and damping contributions are
computed assuming a linear viscoelastic constitutive law [6].
The dynamics matrices can be written as:
� Inertia Matrix M(q) ∈ R3×3:

M(q) =

∫ L

0

J�MJ dX , (26)

� Gravity Vector G(q) ∈ R3:

G(q) =

∫ L

0

J�M
(

Ad−1
gI G

)
dX , (27)

where G ∈ R6 is the gravitational acceleration twist, ex-
pressed in the inertial frame.

� Coriolis Matrix C(q, q̇) ∈ R3×3:

C(q, q̇) =

∫ L

0

J�
(

ad∗
ηMJ +MJ̇

)
dX , (28)

� Stiffness Matrix K ∈ R3×3:

K =

[
kr 0

0
∫ L

0 B�
ξ ΣBξ dX

]
, (29)

� Damping Matrix D ∈ R3×3:

D =

[
βr 0

0
∫ L

0 B�
ξ ΥBξ dX

]
, (30)

where M = ρ diag(A I3×3, Jx, Jy, Jz) ∈ R6×6, Σ =
diag (E A,GA,GA,GJx, E Jy, E Jz) ∈ R6×6 and Υ =
β diag (3A,A,A, Jx, 3Jy, 3Jz) ∈ R6×6. Here, A is the
cross-sectional area, Ji is the second moment of area around
the axis i, E is the Young Modulus, and G is the shear modulus.

Equations (26)-(29) are derived from the works [6], [7]. EoM
derived with GVS (25) are expressed in the classical Lagrangian
form, useful for control purposes.

C. Structural Properties

1) Equilibria and Stability: For an exhaustive study of the
system, it is mandatory to study the equilibria and their stability.
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Fig. 2. Equilibria of R-SIP, founded varying τ̄ . Unstable and stable equilibria
are, respectively, red crosses and blue circles.

The equilibria equation can be derived from (9) or (25), imposing
q̈ = q̇ = 0 and a constant input τ = τ̄ [25], which leads to

G(q̄) +K (q̄) = S�τ̄ . (31)

In this work, we suppose no stiffness on the revolute joint (kr =
0). The solutions q̄ of (31), varying constant torque in the range
τ̄ ∈ [−5, 5] Nm, are represented in Fig. 2(a)–(c).

The stability of these equilibria can be determined thanks to
the Lyapunov Direct Theorem. In particular, an equilibrium is
asymptotically stable if [26]

K =

(
∂K(q)

∂q
+

∂G(q)

∂q

)
|q=q̄

� 0 , (32)

where “� 0” means that the matrix is positive definite. Equa-
tion (32) can be particularized with the linear stiffness contri-
bution (13) or (29), resulting in ∂K(q)/∂q = K. Given that
K � 0, the term ∂G(q)

∂q results crucial for stability. The proof of
this theorem can be found in [26]. In Fig. 2, unstable equilibria
are indicated as red and stable ones in blue. In the same fashion
of [2], we studied also equilibria varying stiffness k, in the case
of the autonomous system τ̄ = 0, resulting in two Pendulum-like
equilibria, that are independent from the stiffness k, i.e.,

q̄(1) =
[
0 0 0

]�
, q̄(2) =

[±π 0 0
]�

. (33)

Substituting (33) in (32), we can deduce their stability.

K(q̄(1),(2)) =

⎡
⎣ ∓Lgm ∓ 1

2Lgm ∓ 1
6Lgm

∓ 1
2Lgm k ∓ 1

3Lgm
k
2 ∓ 1

8Lgm

∓ 1
6Lgm

k
2 ∓ 1

8Lgm
k
3 ∓ 1

20Lgm

⎤
⎦ (34)

From K(q̄(1)), we can see that the matrix is not positive def-
inite, ∀k, and from K(q̄(2)) we can see that the matrix is
positive definite, ∀k. Autonomous R-SIP, in contrast to SIP,
does not show blue-sky catastrophe and Supercritical pitchfork
bifurcation. For further details on this latter phenomenon, see
[12, Sec. 2.3]. Apparently, the revolute joint cancels these non-
linear and elastic properties.

2) Controllability: The R-SIP is an under-actuated system
with 1 active DoF (i.e., θr) and 2 passive DoFs (i.e., θ0 , θ1 for
CP and q0 , q1 for SP). According to [18], the system is not
strongly inertially coupled, since the number of active DoFs is
less than the passive DoFs. For this reason, it is mandatory to
check the controllability of the system. In the first analysis, we
check the controllability of the linearized system.[

q̇

q̈

]
=

[
03×3 I3×3

A21 A22

]
|q=q̄︸ ︷︷ ︸

A

[
q

q̇

]
+

[
03×1

M−1S�

]
|q=q̄︸ ︷︷ ︸

B

τ̄ (35)

Fig. 3. Comparison between the two models. In (a) is shown the Condition
Number of Inertia Matrix M(q), respectively in the CP (blue) and SP (orange)
case. In (b), is shown a comparison in terms of computational time.

where A21 = −M−1K and A22 = −M−1D.
Rewriting (35) in state space form, we can check the control-

lability of the system by the rank of the controllability matrix

R =
[
B AB A2B . . . A5B

]
. (36)

In particular, the system results small-time locally controllable
in q̄, for every equilibria found in this section.

D. Comparison of the Two Approaches

Despite representing the same dynamical systems, the two
ways discussed to derive the proposed models of the R-SIP (9),
(25) show different properties.

1) Numerical Issues: In CP, forward kinematics suffers from
numerical issues, as highlighted in Section III-A. These issues
also afflict dynamics equations (9). In particular, inertia matrix
(10) shows a maximum condition number χmax ≈ 1014 in a
neighborhood of the origin, shown in Fig. 3(a). On the contrary,
in SP, forward kinematics (18) is well-conditioned, thanks to the
product of exponential matrices. The condition number of inertia
matrix (26) is represented in Fig. 3(a) and reaches a maximum
condition number of χmax ≈ 105.

2) Computational Cost: : In CP, dynamics matrices (M(q),
G(q), etc.) can be computed analytically. In the case of SP,
dynamics matrices have to be computed numerically due to
Magnus Expansion of strain twist ξ(X, t). This fact impacts
negatively on the computational cost of the dynamics matrices,
necessary for model-based controllers. In the case of SP, the
computational time of the inertia matrix and gravity vector
increase of 86.49% and 138.25%, respectively. In Fig. 3(b),
is shown a comparison between the computational times of
dynamics matrices, computed with both approaches. The com-
putational times shown in Fig. 3(b) are derived using the MAT-
LAB functions tic and toc, running on a laptop with an Intel
Core i7.

3) Accuracy: SP is surely the most complete and accurate. In
the general case, an R-SIP can be modeled in 3D space, including
elongation/compression, shear, and torsion modes. This model
can be easily extended in a general 3D formulation with all
strain modes. On the contrary, the polynomial curvature model
permits only 2D motion with only bending mode. Since the two
proposed representations of the R-SIP model are equivalent,
up to differences in how integrals are solved, it is possible
to derive a relation between the two approaches and the two
generalized joint variables that describe the curvature and the
strain field. As seen in Section III-A, a curve that lives in a plane,
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Fig. 4. Equilibria of autonomous SIP, varying θrd. Unstable and stable equilibria are, respectively, red crosses and blue circles. The equilibria are computed also
varying the lumped mass on the tip, representing the mass of the object.

Fig. 5. Simulations with two desired trajectories of R-SIP, modelled with CP (a, b) and SP (e, f). (c, d) and (g, h) show the final configuration of R-SIP of the
four simulations.

can be completely defined by its curvature. More precisely,
κ(X, t) is the signed curvature, see [27] for further details. Given
that α(X) is the phase of the tangent versor t(X), the signed
curvature can be defined as the spatial derivative of the phase of
this versor, i.e. κ(X) = α′(X).

Remark: In the 2D case, ξκz
(X) from SP is equal to the

curvature κ(X) from CP.

ξκz
(X) = κ(X) . (37)

Proof: From the definition of signed curvature, we can write
the tangent versor and its derivative:

t(X) =

⎡
⎣cos(α)sin(α)

0

⎤
⎦ , t′(X) = κ(X)

⎡
⎣− sin(α)

cos(α)

0

⎤
⎦ . (38)

Using Frenet-Serret equations in the 2D case, it is possible to
rewrite the derivative of the tangent versor as

t′(X) = R0
s ξ̃κ

[
1 0 0

]�
. (39)

Substituting (39) in (38), we obtain the equality

R0
s

⎡
⎣ 0

ξκz

0

⎤
⎦ = κ(X)

⎡
⎣− sin(α)

cos(α)

0

⎤
⎦ . (40)

Recalling (40) and the definition of the normal versor, we finally
obtain (37).

Substituting X = sL, we finally obtain

κ(s) = ξκz
(s) →

n−1∑
i=0

θis
i =

n−1∑
i=0

qi(sL)
i , (41)

θi = Li qi i ∈ [0, n− 1] . (42)

Equation (42) shows that the two generalized joint vectors, with
the assumptions of SIP [2], differ from each other only by a scale
factor.
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Fig. 6. Pick and place planner applied on R-SIP. (a-c) show snapshots of the catapult trajectory, where the red circle represents the object. In particular, (a) is the
“pick” point and (c) the “place” point. In (d), the evolution over the time of q.

Fig. 7. Evolution of the R-SIP controlled with the pick and place planner,
represented in the phase space. In this figure are also shown the equilibria of
zero dynamics with Δm = 0 and Δm = mobj, to visualize the pick and place
strategy. The green circle shows the initial state q(0) and the purple triangle the
final state q(tf).

IV. CONTROL
R-SIP is an under-actuated system, described by (9) or (25).

According to [18], we can rewrite the dynamics as:{
M11θ̈r +M12q̈sip + h1 +G1 = τ

M�
12θ̈r +M22q̈sip + h2 +G2 = 0

, (43)

where h(q, q̇) =
[
h1 h�

2

]�
is defined as h(q, q̇) =

C(q, q̇)q̇ +Kq +Dq̇ and qsip is general coordinates
vector that describes soft segment’s kinematics, whatever
parametrization has been used.

A well-known controller that can be implemented in this
system is Collocated Feedback Linearization [18]. The goal
is controlling the actuated joint variable θr to follow a desired
trajectory θrd(t). To achieve that, the control law is

τ =
(
M11 −M12M

−1
22M

T
12

)
v + h1+

+G1 −M12M
−1
22 (h2 +G2) , (44)

where v can be chosen as classical PD controller, with gains that
minimize LQR cost function, i.e.,

v = θ̈rd +KD

(
θ̇rd − θ̇r

)
+KP (θrd − θr) . (45)

The Zero Dynamics of the controlled system is:

M22q̈sip + h2(qsip, q̇sip) +G2(qsip, θrd) = 0 . (46)

Equation (46) represents the dynamics equation of autonomous
SIP, as known from [2]. The controlled system converges to

equilibrium (θrd, q̄sip), in which q̄sip depends also by the desired
θrd. The performance of the controlled R-SIP strongly depends
on the physical properties of the SIP, as highlighted by (46). For
this reason, we can map equilibria of Zero Dynamics varying θrd,
as shown in Fig. 4. The equilibria map is derived considering a
varying lumped mass Δm on the robot’s tip, in perspective to
consider the load applied by the object during the pick and place
task.

Considering the equilibria map for Δm = 0, we notice the
occurrence of the blue-sky catastrophe phenomenon, for |θrd| >
θ∗rd(0) =

π
2 . Here, θ∗rd(Δm) represents the critical angle at which

the blue-sky catastrophe arises, varying the object’s mass Δm.
Therefore, it is possible to exploit the snap effect in the controlled
R-SIP system, overcoming the impossibility of an autonomous
R-SIP to show this phenomenon. In [4], the Authors found a
similar equilibria map in which the critical value corresponds
to the critical buckling load. Thus, buckling is strictly related
to both snap and the blue-sky catastrophe phenomena. With the
map in Fig. 4 and Inverse Kinematics, it is possible to exploit
controlled R-SIP with a pick and place perspective.

V. SIMULATIONS

The proposed model and controller are validated through
numerical examples. In the first example, R-SIP is modeled with
CP, i.e. (9). The system is controlled by the control law (44) to a
desired trajectory θrd(t) and is defined by the following param-
eters: L = 1.0m, D = 0.1m, ρ(s) = m δ(s− 1), m = 1.0 kg,
k = 1.0Nm/rad, kr = 0.0Nm/rad, β = 0.1Nms/rad, βr =
0.5Nms/rad. Fig. 5(a), and (b), shows the results of simula-
tions with θrd(t) = arctan(t− 15) and θrd(t) =

π
2 δ−1(t− 15),

respectively. Fig. 5(c), and (d) shows the final positions of
R-SIP at the equilibrium (θ̄rd, q̄sip), in which we can observe
two different equilibria for the same θ̄rd = π

2 , confirming map
showed in Fig. 4. An interesting fact is that, in the case of
a discontinuous desired trajectory, the snap effect occurs, in
contrast to the smooth one. This nonlinear behavior of the system
can be exploited for pick and place purposes. An additional
simulation is provided in the video attached to this work, with a
sinusoidal reference trajectory.

Comparable results are obtained by simulating the SP model,
as shown in Fig. 5(e)–(h). These simulations are computed with
SoRoSim MATLAB toolbox [21]. The system is simulated with
equivalent parameters, w.r.t. the previous simulations, such as
with the following parameters: L = 1.0m, D = 0.1m, ρ(X) =
ρ̄ δ(X − L), ρ̄ = 1141.5728 kg/m3, E = 0.2037MPa, kr =
0.0Nm/rad, βr = 0.5Nms/rad, β = 0.0067906MPas. The
evolutions of the two models over time show a slight difference
in the transient phase. This can be attributable to the different
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discretization techniques employed. While the CP model derives
an analytical solution from the integral (3), the SP model must
numerically compute (18), introducing a numerical approxima-
tion that can cut high-frequency contributions.

A. Pick and Place Planner

Consider an R-SIP controlled by the law (44) and an object
with a mass of mobj. Assuming that R-SIP can grasp the ob-
ject instantaneously without relative motion (e.g., suction cup
mounted on the tip), we can describe the behavior of the entire
system by increasing the value of the lumped mass on the robot’s
tip ofΔm = mobj. To model the quasi-instantaneous increase in
load, we utilize a Sigmoid function, to avoid unrealistic discon-
tinuous functions. Specifically,Δm(t) = mobj (1/(exp(−a(t−
tact)))), where tact represents the time at which the R-SIP picks
the object (e.g., activation time of the suction cup) and a ∈ R+

denotes the rate of the Sigmoid function. To exploit the snap
effect for pick and place purposes, a planner has been developed.
It consists of a sequence of desired trajectories θrd(t), designed
to reach two desired equilibria and, consequently, two desired
configurations. Fig. 6, shows a simulation of the controlled
R-SIP with the pick and place planner, where mobj = 0.3 kg,
a = 4 and tact = 40 s. To better visualize the planning strategy,
Fig. 7 provides insight into the evolution of the system in the
phase space, showcasing the planning strategy.

The strategy comprises three steps: in the first step (Fig. 6(a)),
the desired trajectory is constant θ̄rd = θ

(1)
rd . The second step

(Fig. 6(b)) consists in a slow linear trajectory θrd = −0.1(t−
40) + θ

(1)
rd and the third step (Fig. 6(c)) returns to a constant

θ̄rd = θ
(2)
rd . The first and third steps correspond to the “pick” and

“place” phases, during which the soft manipulator grabs and
releases the object. The value of θ(1)rd and θ

(2)
rd can be selected

from the equilibria map, outside the region [−θ∗rd(0), θ
∗
rd(0)]

and [−θ∗rd(mobj), θ
∗
rd(mobj)], respectively. In the second step, the

slow linear reference induces the snap effect. As shown in Fig. 7,
the slowly varying θrd(t) guides the evolution of the system to
follow the equilibria map of the robot with the object on its tip
(Fig. 4), keeping the system in a quasi-static condition. When
θrd (t) = θ∗rd(mobj), two equilibria vanish and R-SIP is attracted
to the unique remaining equilibrium, causing a fast release of
stored energy and a “catapult-like trajectory” [2].

VI. CONCLUSION

This letter introduced and analyzed the R-Soft Inverted Pen-
dulum, including a comparative analysis of two equivalent
formulations of the model. A Feedback Linearization control
law has been designed to control this system. Moreover, a new
strategy has been provided, exploiting the snap effect for the
pick-and-place task. Finally, these theoretical elements have
been validated through simulations, which showed the consis-
tency of the models and the proposed controller. Future work
will focus on the design and development of an R-SIP prototype
to experimentally validate the system and the control law. In ad-
dition, a general pick and place strategy will be developed, using
inverse kinematics and the equilibria map found in Section IV.
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