-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtest_random.py
97 lines (78 loc) · 3.26 KB
/
test_random.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import os
import gym
import argparse
import shutil
import importlib
import logging
import torch
import sys
from method.explorer import Explorer
from policies.policy_factory import policy_factory
from envs.model.agent import Agent
def set_random_seeds(seed):
"""
Sets the random seeds for pytorch cpu and gpu
"""
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.set_num_threads(4)
return None
def main(args):
set_random_seeds(args.random_seed)
make_new_dir = True
if os.path.exists(args.output_dir):
if args.overwrite:
shutil.rmtree(args.output_dir)
else:
key = input('Output directory already exists! Overwrite the folder? (y/n)')
if key == 'y' and not args.resume:
shutil.rmtree(args.output_dir)
else:
make_new_dir = False
if make_new_dir:
os.makedirs(args.output_dir)
shutil.copy(args.config, os.path.join(args.output_dir, 'config.py'))
args.config = os.path.join(args.output_dir, 'config.py')
log_file = os.path.join(args.output_dir, 'output.log')
# 仅仅知道模块名字和路径的情况下import模块
spec = importlib.util.spec_from_file_location('config', args.config)
if spec is None:
parser.error('Config file not found.')
config = importlib.util.module_from_spec(spec) # 通过传入模块的spec返回新的被导入的模块对象
spec.loader.exec_module(config)
# configure logging
mode = 'w'
file_handler = logging.FileHandler(log_file, mode=mode) # 输出日志信息到磁盘文件
stdout_handler = logging.StreamHandler(sys.stdout)
level = logging.INFO if not args.debug else logging.DEBUG
logging.basicConfig(level=level, handlers=[stdout_handler, file_handler],
format='%(asctime)s, %(levelname)s: %(message)s',
datefmt="%Y-%m-%d %H:%M:%S")
logging.info('Current config content is :{}'.format(config))
device = torch.device("cpu")
# configure environment
env = gym.make('CrowdSim-v0')
human_df = env.human_df
# configure policy
policy_config = config.PolicyConfig(args.debug)
policy = policy_factory[policy_config.name]()
policy.set_device(device)
policy.configure(policy_config,human_df)
agent = Agent()
agent.set_policy(policy)
env.set_agent(agent)
explorer = Explorer(env, agent, device,gamma=0.9)
# random policy
explorer.run_k_episodes(k=1, phase='test', args=args,plot_index=1)
if __name__ == '__main__':
parser = argparse.ArgumentParser('Parse configuration file')
parser.add_argument('--config', type=str, default='configs/infocom_benchmark/random.py')
parser.add_argument('--output_dir', type=str, default='logs/debug')
parser.add_argument('--overwrite', default=False, action='store_true')
parser.add_argument('--debug', default=False, action='store_true') # 开启debug模式
parser.add_argument('--random_seed', type=int, default=0)
parser.add_argument('--vis_html', default=False, action='store_true')
parser.add_argument('--plot_loop', default=False, action='store_true')
parser.add_argument('--moving_line', default=False, action='store_true')
sys_args = parser.parse_args()
main(sys_args)